Enteroinvasive Escherichia Coli O96: H19 is an emergent biofilm-forming pathogen

Document Type



Paediatrics and Child Health; Biological and Biomedical Sciences


Enteroinvasive Escherichia coli (EIEC) is a diarrheagenic E. coli pathotype carrying a virulence plasmid that encodes a type III secretion system (TTSS) directly implicated in bacterial cell invasion. Since 2012, EIEC serotype O96:H19 has been recognized in Europe, Colombia, and most recently Uruguay. In addition to the invasion phenotype, the strains isolated from Colombian children with moderate-to-severe gastroenteritis had a strong biofilm formation phenotype, and as a result, they are referred to as biofilm-forming enteroinvasive E. coli (BF-EIEC). The objective of this study was to characterize the biofilm formation phenotype of the BF-EIEC O96:H19 strain 52.1 isolated from a child with moderate-to-severe gastroenteritis in Colombia. Random mutagenesis using Tn5 transposons identified 100 mutants unable to form biofilm; 20 of those had mutations within the pgaABCD operon. Site-directed mutagenesis of pgaB and pgaC confirmed the importance of these genes in N-acetylglucosamine-mediated biofilm formation. Both biofilm formation and TTSS-mediated host cell invasion were associated with host cell damage on the basis of cytotoxic assays comparing the wild type, invasion gene mutants, and biofilm formation mutants. Multilocus sequence typing-based phylogenetic analysis showed that BF-EIEC strain 52.1 does not cluster with classic EIEC serotype strains. Instead, BF-EIEC strain 52.1 clusters with EIEC serotype O96:H19 strains described in Europe and Uruguay. In conclusion, BF-EIEC O96:H19, an emerging pathogen associated with moderate-to-severe acute gastroenteritis in children under 5 years of age in Colombia, invades cells and has a strong biofilm formation capability. Both phenotypes are independently associated with in vitro cell cytotoxicity, and they may explain, at least in part, the higher disease severity reported in Europe and Latin America.
IMPORTANCE Enteroinvasive Escherichia coli (EIEC), a close relative of Shigella, is implicated in dysenteric diarrhea. EIEC pathogenicity involves cell invasion mediated by effector proteins delivered by a type III secretion system (TTSS) that disrupt the cell cytoskeleton. These proteins and the VirF global regulator are encoded by a large (>200 kb) invasion plasmid (pINV). This study reports an emergent EIEC possessing a cell invasion phenotype and a strong polysaccharide matrix-mediated biofilm formation phenotype. Both phenotypes contribute to host cell cytotoxicity in vitro and may contribute to the severe disease reported among children and adults in Europe and Latin America.


Pagination are not provided by the author/publisher

Publication (Name of Journal)

Journal of bacteriology