Role of the BcI-2 gene family in prostate cancer progression and its implications for therapeutic intervention
Document Type
Article
Department
Pathology and Laboratory Medicine
Abstract
Prostate cancer (PC) is an escalating health burden in the western world. A large number of patients still present with extraprostatic (i.e., T3/T4, N0, M0/M1 or any T category and M1 disease or involved lymph nodes) and therefore incurable disease. Since the work of Huggins in 1940, there have been no major therapeutic advances and androgen ablation remains the best treatment option for extraprostatic androgen-responsive PC. Eighty to ninety percent of PC patients respond well to this form of treatment initially. After a median time of approximately 2 years, however, relapse to an androgen-independent (AI) state occurs, followed by death after a further median 6 months. Androgen ablation is rarely curative. The major molecular defect in extraprostatic and AI PC is the inability of PC cells to initiate apoptosis in response to a variety of stimuli, including different forms of androgen ablation and cytotoxic agents. The balance between cellular proliferation and cell death is regulated by multiple genes or families of genes through the cell cycle. The exact mechanisms governing this intricate and complex process are as yet not fully understood. One family of genes involved in cell survival/death control is the Bcl-2 gene family, which consists of homologous proteins that function to regulate distal and crucial commitment steps of the apoptotic pathway. The Bcl-2 family constitutes both agonists and antagonists of apoptosis that function at least in part through protein-protein interactions between various members of the family. The final outcome depends on the relative ratio of death agonists and antagonists. Bcl-2 expression has been closely associated with the AI phenotype of PC. Cytotoxic chemotherapy may be used as palliative therapy in AI PC but has not been found effective. Most chemotherapeutic cytotoxic agents induce apoptosis in cancer cells by direct and indirect action on the cell cycle. In vitro and in vivo studies have established that Bcl-2 expression confers an antiapoptotic activity against androgen withdrawal and cytotoxic chemotherapy. It thus offers a tempting potential target for therapeutic manipulations of PC.
Publication (Name of Journal)
Environmental Health Perspectives
Recommended Citation
Chaudhary, K.,
D. Abel, P.,
Lalani, E.
(1999). Role of the BcI-2 gene family in prostate cancer progression and its implications for therapeutic intervention. Environmental Health Perspectives, 107(1), 49-57.
Available at:
https://ecommons.aku.edu/pakistan_fhs_mc_pathol_microbiol/662