Fuzzy control of the baseline activity within the basal ganglia of rat brain

Document Type

Conference Paper

Conference Name

Multi Topic Conference, 2003. INMIC 2003. 7th International

Conference Location

Islamabad, Pakistan



Publication (Name of Journal)

Multi Topic Conference, 2003. INMIC 2003. 7th International


Biological and Biomedical Sciences; Neurosurgery




Deep brain stimulation (DBS) is an increasingly popular treatment modality for Parkinson's disease (PD) based on chronic electrical stimulation of the basal ganglia. The basal ganglia are responsible for regulating motor control of the human body, a function exemplified by disease states such as PD. We describe a novel technique based on a chronically implantable neural prosthetic device that could be used as a potential treatment in many basal ganglia disorders, including PD. The prosthetic device implements a fuzzy control of the baseline excitation of the motor cortex and derives a feedback loop from the thalamocortical pathway, thus forming a closed loop control. It improves over DBS by being self-adjustable, thereby eradicating the need of repeated adjustments of various parameters of the excitatory signal(s). The neural prosthetic device can be implanted in a rat brain and the fuzzy control rule set be derived from in vitro organotypic slice culture models of the basal ganglia.