The effect of environmental and physiological conditions on excystation of Acanthamoeba castellanii belonging to the T4 genotype

Document Type



Biological and Biomedical Sciences


Excystation in Acanthamoeba is an important property for the onset of infection as well as infection recurrence, post-treatment. The overall aim of this study was to determine the effects of several environmental and physiological parameters on excystation in Acanthamoeba castellanii belonging to the T4 genotype. Cysts were prepared by inoculating A. castellanii trophozoites on non-nutrient agar plates for up to 2 weeks. To determine the effects of various conditions on excystation, A. castellanii cysts were inoculated in growth medium i.e. PYG and incubated at varying temperatures (4-40 °C), various pHs (4-9), artificial light/dark cycles and 5% of CO2. Optimum excystation was observed when cysts were incubated at 30 °C in growth medium at neutral pH. Extremes of temperature and pH reduced excystation, while light/dark cycles had no effect on excystation of A. castellanii. On the other hand, 5% of CO2 enhanced excystation and growth of excysting amoebae. To determine the effect of serum on A. castellanii excystation, assays were performed in the presence of varying concentrations of heat-inactivated foetal bovine serum (FBS) (5-100%). The results revealed that FBS promoted excystation. The involvement of G proteins in excystation was also determined. Using propranolol hydrochloride, a G protein inhibitor, the results revealed that G proteins play a role in A. castellanii differentiation. Furthermore, organic solvents (methanol/ethanol) completely blocked excystation. None of the aforementioned conditions had any effect on the viability of A. castellanii. A complete understanding of excystation in A. castellanii will be of value to counter infection recurrence.

Publication (Name of Journal)

Parasitology Research