Document Type

Report

Department

Biological and Biomedical Sciences

Abstract

Heart rhythms are generated by complex self-regulating systems governed by the laws of chaos. Consequently, heart rhythms have fractal organization, characterized by self-similar dynamics with long-range order operating over multiple time scales. This allows for the self-organization and adaptability of heart rhythms under stress. Breakdown of this fractal organization into excessive order or uncorrelated randomness leads to a less-adaptable system, characteristic of aging and disease. With the tools of nonlinear dynamics, this fractal breakdown can be quantified with potential applications to diagnostic and prognostic clinical assessment. In this paper, I review the methodologies for fractal analysis of cardiac rhythms and the current literature on their applications in the clinical context. A brief overview of the basic mathematics of fractals is also included. Furthermore, I illustrate the usefulness of these powerful tools to clinical medicine by describing a novel noninvasive technique to monitor drug therapy in atrial fibrillation.

Publication (Name of Journal)

Thescientificworldjournal

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Biochemistry Commons

Share

COinS