Document Type

Article

Department

Pathology (East Africa)

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing has lagged in many countries because of test kit shortages and analytical process bottlenecks. This study investigated the feasibility and accuracy of a sample pooling approach for wide-scale population screening for coronavirus disease 2019. A total of 940 nasopharyngeal swab samples (934 negative and 6 positive) previously tested for SARS-CoV-2 were deidentified and assigned random numbers for analysis, and 94 pools of 10 samples each were generated. Automated RNA extraction, followed by RT-PCR, was performed in a 96-well plate. Positive pools were identified, and the individual samples were reanalyzed. Of the 94 pools/wells, four were positive [Ct values: N (22.7 to 28.3), ORF1ab (23.3 to 27.2), and internal control (34.4 to 35.4)]. The 40 samples comprising the four pools were identified and reanalyzed individually; six samples were positive, with Ct values of N gene, ORF1ab, and internal control comparable to their respective wells. Additional experiments were performed on samples with high Ct values, and overall results showed 91.6% positive and 100% negative agreement compared with individual testing approach. Thus, 940 samples were tested in 148 reactions compared with 940 reactions in routine screening. The sample pooling strategy may help catch up with testing needs and minimal turnaround times and facilitate enormous savings on laboratory supplies, extraction, and PCR kits currently in short supply.

Publication

Journal of Molecular Diagnostics

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Included in

Pathology Commons

Share

COinS