August 2017

Role of surgery in brain metastases

Altarf Ali Laghari
Aga Khan University, altaf.alilaghari@aku.edu

Syed Ijlal Ahmed
Aga Khan University

Muhammad Shahzad Shamim
Aga Khan University, shahzad.shamim@aku.edu

Follow this and additional works at: http://ecommons.aku.edu/pakistan_fhs_mc_surg_surg

Part of the [Neurology Commons](http://ecommons.aku.edu/pakistan_fhs_mc_surg_surg), and the [Surgery Commons](http://ecommons.aku.edu/pakistan_fhs_mc_surg_surg)

Recommended Citation

Available at: http://ecommons.aku.edu/pakistan_fhs_mc_surg_surg/676
Role of surgery in brain metastases
Altaf Ali Laghari, Syed Ijlal Ahmed, Muhammad Shahzad Shamim

Abstract
Brain metastases remain the commonest type of brain tumour, being four times more common than primary brain tumours. Although surgical intervention may be recommended for one of various reasons in the management of these tumours, including but not limited to confirmation of diagnosis, relief of mass effect, improvement of neurological status and prolongation of survival, the guidelines for management of brain metastases remain largely subjective and therefore controversial. Herein the authors have attempted to review some of the existing evidence on role of surgery in the management of brain metastases and have presented their selected guidelines for the readers.

Keywords: Brain metastasis, Microsurgery, Radiosurgery, Whole brain radiotherapy.

Introduction
Treatment strategies for brain metastases depend on several factors. Some patients may be candidates for whole brain radiotherapy (WBRT), while others may require surgical resection followed by WBRT or local radiation therapy. Stereotactic radiosurgery (SRS) has added another dimension to the management of these lesions. Surgery has a definite role in management as in select cases it provides or confirms diagnosis, relieves intracranial mass effect, improves symptoms, and may also improve survival, all with low morbidity and mortality rates. It is generally agreed upon, that to benefit from surgical intervention, a patient with brain metastases must have reasonable medical fitness, with a systemic disease process amenable to benefit from local central nervous system (CNS) tumour control. The objective of this review is to discuss the role of surgery in the treatment of brain metastases. Although there is substantial literature on this topic, the authors have mentioned few key articles only.

Review of Evidence
At a time when surgery was not considered an option for management of brain metastases, MacGee et al., reported better quality of life and survival after surgical resection of solitary or single lung metastasis. Patchell et al., in one of the most cited papers on this topic, reported longer median survival (40 vs. 15 weeks) after surgical resection with radiation therapy (XRT) of single metastasis compared to XRT alone. Similar results were also reported by Sause et al, in a retrospective review with longer survival in the patients having surgical resection and XRT compared to XRT alone in solitary brain metastasis. Swaya et al., in another landmark paper, also concluded that surgery was superior to SRS in prolonging life, with better local control of the disease. Muavevic et al., in their retrospective review of management of solitary metastasis of less than 3.5 cm diameter concluded that result of surgery with WBRT is comparable to SRS in local tumour control rate. Zacet et al, reported results of 20-years experience of surgical management of brain...
metastases from melanoma and concluded that surgical resection along with WBRT improved survival and quality of life in these patients. However other authors such as Neill et al., have argued that for single brain metastasis of different cancers like lung, genitourinary, gastrointestinal and melanoma, surgical resection compared to SRS followed by low dose WBRT, does not improve survival. Yoo et al. report results of ’microscopic total resection’ compared with ‘gross resection’, describing ‘total resection’ as extension of resection to a depth of 5-mm after gross resection and confirming tumour free limits by frozen section. This is only possible in non-eloquent areas. They compared 43 patients with another group of 51 patients with eloquent-situated brain metastases who underwent conventional gross-total resection. The two-year recurrence rates were 63.2% and 29.1% favouring the microscopic total resection group (p< 0.003) Shimony et al., in their recent article, have reported earlier resolution of peri-tumoural oedema with surgery compared to SRS, resulting in earlier improvement in symptoms and reduction of steroid use Lin X et al., have published their recommendations on clinical decision-making in treatment of brain metastases. These recommendations are based on an extensive literature review and we find them well balanced (Table-1).

Conclusion

The authors conclude that for certain patients with brain metastases; surgical resection is a useful option as it improves function and survival. However, patient selection remains the most important aspect of management. Extended resection, or microscopic total resection, may have a role in improving outcomes even further, but it needs to be studied in more detail. The authors strongly recommend multidisciplinary team meetings for combined decision-making in patients with brain metastases.

References