July 2012

Melanotic Neuroectodermal Tumour of Infancy: A Rare Brain Tumour of Childhood

Muhammad Babar Khan
Aga Khan University

Delvene Soares
Ziauddin University

Muhammad Zubair Tahir
Aga Khan University

Rajesh Kumar
Aga Khan University

Khurram Minhas
Aga Khan University

See next page for additional authors

Follow this and additional works at: http://ecommons.aku.edu/pakistan_fhs_mc_mc
Part of the [Neurology Commons](http://ecommons.aku.edu/pakistan_fhs_mc_mc)

Recommended Citation

Available at: http://ecommons.aku.edu/pakistan_fhs_mc_mc/24
Authors
Muhammad Babar Khan, Delvene Soares, Muhammad Zubair Tahir, Rajesh Kumar, Khurram Minhas, and Muhammad Ehsan Bari

This article is available at eCommons@AKU: http://ecommons.aku.edu/pakistan_fhs_mc_mc/24
INTRODUCTION

Melanotic neuroectodermal tumour of infancy (MNTI) was first described by Krompecher in 1918. However, it was named several years later in 1966, by Borello and Gorlin, after they reported a case with elevated urinary levels of VMA suggesting a neural crest origin.1,2

Melanotic neuroectodermal tumour of infancy (MNTI) is a rare, osteolytic pigmented lesion of neural crest origin, occurring in infants.3 Majority of cases have been reported in the maxilla, with the skull and the brain being less common locations. Very rarely MNTI can also be found in the epididymis, mediastinum and the female reproductive organs.2 Although melanotic neuroectodermal tumour of infancy is mostly benign, a malignancy rate of 6.6% has been reported.2 The majority of cases occur within the first year of life without any gender predilection.1,2,4,5

MNTI often presents as a swiftly growing mass resulting in skull deformation.4 The recurrence rates after resections have been reported from 10% to as high as 60%.2,5 Here, we present the first case of MNTI from Pakistan.

CASE REPORT

An 8 months old female presented with a swelling on the scalp for the last 6 months. The swelling appeared gradually and was progressive. There was no history of trauma, fever, weight loss, vomiting or seizures. She had otherwise normal growth and development milestones. On examination, the lesion was a 5 x 6 cm midline swelling which was non-tender and firm. The overlying skin was mobile but the lesion was attached to the underlying structures. CT imaging confirmed the presence of an osteolytic tumour in the anterior parasagittal skull with dural involvement. The tumour was surgically excised enbloc. The patient has been well at 2 years follow-up without any evidence of recurrence.

Key words: Melanotic neuroectodermal tumour. Scalp swelling. Enbloc tumour excision. Vanillylmandelic acid. Osteolytic pigmented lesion. GFAP stain.

ABSTRACT

Melanotic neuroectodermal tumour of infancy (MNTI) was first described by Krompecher in 1918. However, it was named several years later in 1966, by Borello and Gorlin, after they reported a case with elevated urinary levels of VMA suggesting a neural crest origin.1,2 Melanotic neuroectodermal tumour of infancy (MNTI) is a rare, osteolytic pigmented lesion of neural crest origin, occurring in infants.3 Majority of cases have been reported in the maxilla, with the skull and the brain being less common locations. Very rarely MNTI can also be found in the epididymis, mediastinum and the female reproductive organs.2 Although melanotic neuroectodermal tumour of infancy is mostly benign, a malignancy rate of 6.6% has been reported.2 The majority of cases occur within the first year of life without any gender predilection.1,2,4,5

MNTI often presents as a swiftly growing mass resulting in skull deformation.4 The recurrence rates after resections have been reported from 10% to as high as 60%.2,5 Here, we present the first case of MNTI from Pakistan.

CASE REPORT

An 8 months old female presented with a swelling on the scalp for the last 6 months. The swelling appeared gradually and was progressive. There was no history of trauma, fever, weight loss, vomiting or seizures. She had otherwise normal growth and development milestones. On examination, the lesion was a 5 x 6 cm midline swelling which was non-tender and firm. The overlying skin was mobile but the lesion was attached to the underlying structures. CT imaging confirmed the presence of an osteolytic tumour in the anterior parasagittal skull with dural involvement. The tumour was surgically excised enbloc. The patient has been well at 2 years follow-up without any evidence of recurrence.

Key words: Melanotic neuroectodermal tumour. Scalp swelling. Enbloc tumour excision. Vanillylmandelic acid. Osteolytic pigmented lesion. GFAP stain.

1 Department of Neurosurgery / Pathology, The Aga Khan University Hospital, Karachi.
2 Medical Student, The Aga Khan University, Karachi.
3 Medical Student, Ziauddin University, Karachi.
4 Medical Student, Ziauddin University, Karachi.

Correspondence: Dr. Muhammad Ehsan Bari, Department of Neurosurgery, The Aga Khan University Hospital, Karachi.
E-mail: ehsan.bari@aku.edu

Received January 02, 2012; accepted July 31, 2012.
Discussion

Most MNTI lesions occur in the maxilla, with skull and brain involvement being quite rare (Figure 4). PRIMARY tumours originating from the brain itself are even rarer and very few cases have been reported involving the cerebellar vermis and the third ventricle. Signs of anaplasia such as mitoses and pleomorphism are not evident in MNTI. Under a light microscope, three different kinds of cells can be appreciated. The first resemble epithelial cells are large with abundant cytoplasm, have many vacuoles and a large ovoid sharply marginated nucleus. The second cell type has a hyper chromatic nucleus with a non-pigmented cytoplasm and is small and immature while the third type of cells is small, stellate and resemble fibroblasts. The tumour cells are divided into clusters with slit like alveoli which are irregular in size and shape. The lesion may be mistaken as malignant due to its rapid growth rate, therefore, careful workup especially that of histopathology is advocated before a final diagnosis is reached. Various studies show that the MNTI is a congenital dysembryogenetic neoplasm arising out of neural crest cells. Like other tumours of neural crest origin, MNTI secretes VMA and other catecholamines, the levels of which go down after complete tumour excision. MNTI also expresses melano-transferrin which further supports its neuroectodermal origin. However, VMA is not diagnostic as many patients have also shown normal urinary VMA levels. This is probably because not all the cells of neural crest origin are involved in the metabolism of cathecolamines. Immunocytochemistry is also of help. The smaller hyper chromatic neuroblast-like cells are usually positive for neuron-specific enolase, glial fibrillary acidic protein, and synaptophysin; while the larger epithelioid cells may be positive for vimentin, cytokeratin, epithelial membrane antigen, neuron-specific enolase, glial fibrillary acidic protein, synaptophysin, Leu 7, and HMB45. S-100 protein, alpha fetoprotein and nerofilament are usually non-reactive. This can help differentiate MNTI from other PNETs (Primitive Neuro Ectodermal Tumours). Neoplastic cells with poly-phenotypic expression of neural, melanocytic and neural markers exhibit no photo-receptor or myogenic differentiation. Clinical differentials are broad but MNTI must be distinguished from Ewing’s sarcoma, rhabdomyosarcoma, peripheral neuroepithelioma, neuroblastoma, desmoplastic round cell tumour, leukemia, malignant melanoma, and infections or cephalohematomas.
MNTI can be differentiated from Ewing's sarcoma, peripheral neuroepithelioma, desmoplastic round cell tumour, leukemia and infections or cephalohematomas as it has biphasic neoplastic population and a polyphenotypic immunohistochemical expression. The lack of S-100 reactivity coupled with lack of neuroendocrine differentiation markers, myo D-1, myoglobin, myogenin and muscle specific Actin reactivity can differentiate MNTI from cellular blue nevus, melanoma, neuroblastoma and rhabdomyosarcoma. In the course of the disease, a well demarcated osteolytic radiolucency is found which may have regular or irregular borders. A well grown MNTI can cause displacement of the surrounding tissues and damage the bone as well. However, these changes may not be apparent if the conventional radiographs are done early. MR angiography can prove particularly useful in midline recurrences after complete resection occur with 4 weeks; there was one exception where the tumour growing more aggressively along the site of a previous biopsy.1 Recurrence may also occur because of inadvertent seeding during the excision surgery. It is also noteworthy that the biological behaviour of the MNTI, such as local growth rate and the possibility of metastasis cannot be judged adequately from either clinical or histological features. Patient's family should be informed of all these variables in treatment. The child should be followed-up till adulthood so that surgical complications and recurrences can be picked up early and managed accordingly allowing the child to reach normal growth and development milestones.

REFERENCES