February 2012

The influence of antiretroviral therapy on the QTc interval in an African cohort

J. Shavadia
Aga Khan University

Reena Shah
Aga Khan University, reena.shah@aku.edu

Gerald Yonga
Aga Khan University, gerald.yonga@aku.edu

R. Patel
Chelsea and Westminster Hospital

J. Stebbing
Chelsea and Westminster Hospital

See next page for additional authors

Follow this and additional works at: http://ecommons.aku.edu/eastfrica_fhs_mc_intern_med

Part of the [Cardiology Commons](http://ecommons.aku.edu/eastfrica_fhs_mc_intern_med) and the [Other Medical Specialties Commons](http://ecommons.aku.edu/eastfrica_fhs_mc_intern_med)

Recommended Citation

Available at: http://ecommons.aku.edu/eastfrica_fhs_mc_intern_med/9
The aim of this study was to determine whether there is an association between antiretroviral (ARV) therapy and prolonged QT in HIV-positive ARV-treated patients in Nairobi, Kenya. HIV-positive adults from both inpatient and outpatient departments at Aga Khan Teaching Hospital, Nairobi, were enrolled with exclusion criteria including any known cardiac disease. Patients were enrolled into either the "ARV-experienced" or "ARV-naive" arm of the study. The study was approved by the local ethics committee, and written informed consent obtained from all patients.

A standard 12-lead electrocardiogram was obtained in each patient, and a QTc interval of >440 ms was considered prolonged. A total of 299 HIV-positive patients were screened, 157 in the ARV-experienced arm and 142 in the ARV-naive control arm. A total of 27 patients in the ARV-experienced arm and 12 in the ARV-naive arm were excluded due to protocol violations, leaving 130 patients in each arm of the study (Table 1). QTc interval prolongation was observed in 16.2% of patients in the ARV-experienced group, compared with 6.9% in the ARV-naive control group ($\chi^2 = 5.43; P = .01$); the odds ratio was calculated as 2.5 with a 95% confidence interval (1.01–6.67; $P = .02$). The overall prevalence of QTc prolongation across the whole subject cohort (ARV-experienced and ARV-naive) was 11.5%. When patients were divided by sex, prolongation was observed in 11.3% of male and 11.8% of female patients. The majority of patients with QTc prolongation had QTc intervals of 440–469 ms, and none had QTc intervals >500 ms (Table 2). There did not appear to be any significant difference in prevalence of QTc prolongation between patients receiving a nonnucleoside analogue reverse-transcriptase inhibitor–based regimen and those receiving a protease inhibitor–based regimen ($P = .78$). In addition, there was no significant difference in prevalence of QTc prolongation between patients with World Health Organization stage I/II HIV infection and those with stage III/IV infection ($\chi^2 = 0.52; P = .47$), nor were there correlations with CD4 cell count ($r = -0.043$), in contrast to findings of other studies [4–6].

Literature on the association of QTc prolongation and ARV therapy is surprisingly sparse [7–10]. Our study shows that ARV therapy does appear to confer a significant increased risk of QTc prolongation in HIV-positive patients, compared with ARV-naive controls. The increased risk has the potential to predispose otherwise medically stable patients to the development of potentially fatal ventricular arrhythmias, although the exact significance of an acquired asymptomatic QTc prolongation in clinical practice is yet to be established.

These results should remind physicians of the importance of measuring and monitoring the QTc interval for patients receiving ARV therapy and tailoring management accordingly, to successfully minimize cardiovascular morbidity and mortality as ARV drugs become readily available.

Notes

Acknowledgements. We thank Dr Jowi and Dr Sinta for their valuable critique of the paper.

Financial support. This work was supported by the Research Support Unit of Aga Khan University Hospital, Nairobi, Kenya.

Potential conflicts of interest. All authors: No reported conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

J. Shavadia,1 R. Shah,1 G. Yonga,1 R. Patel,2 J. Stebbing,2 and M. Nelson2
1Departments of HIV Medicine and Cardiology, Aga Khan University Hospital, Nairobi, Kenya; and 2Department of HIV Medicine, Imperial College, Chelsea and Westminster Hospital, London, United Kingdom

References

1. Ntsekhe M, Mayosi BM. Cardiac manifestations of HIV infection: an African

Correspondence: Justin Stebbing, MA, FRCP, FRCPATH, PhD, Department of HIV Medicine, Imperial College, London SW10 9NH, UK (j.stebbing@imperial.ac.uk).

Clinical Infectious Diseases 2012;54(3):448–9 © The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

DOI: 10.1093/cid/cir712

Table 1. Baseline Characteristics of Study Patients

<table>
<thead>
<tr>
<th>Patient characteristic</th>
<th>ARV-experienced patients</th>
<th>ARV-naive patients</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean ± SD (range), y</td>
<td>42.0 ± 8.15 (23–72)</td>
<td>42.5 ± 8.17 (27–84)</td>
<td>.60</td>
</tr>
<tr>
<td>Sex ratio, M-F</td>
<td>0.97:1</td>
<td>1:1.13</td>
<td>.62</td>
</tr>
<tr>
<td>Weight, mean ± SD (range), kg</td>
<td>67.4 ± 12.8 (42–123)</td>
<td>66.9 ± 15.0 (40–112)</td>
<td>.77</td>
</tr>
<tr>
<td>Hypertension, no. (%)</td>
<td>30 (23.1)</td>
<td>34 (26.2)</td>
<td>.67</td>
</tr>
<tr>
<td>Diabetes mellitus, no. (%)</td>
<td>4 (3.1)</td>
<td>7 (5.4)</td>
<td>.54</td>
</tr>
<tr>
<td>Excess alcohol intake, no. (%)</td>
<td>1 (0.8)</td>
<td>12 (9.2)</td>
<td>.004</td>
</tr>
<tr>
<td>Current smoker, no. (%)</td>
<td>1 (0.8)</td>
<td>9 (6.9)</td>
<td>.02</td>
</tr>
<tr>
<td>CD4 cell count, mean ± SD, cells/mm³</td>
<td>344 ± 269 (4–1308)</td>
<td>288 ± 331 (3–2000)</td>
<td>.14</td>
</tr>
<tr>
<td>Mean potassium level, mean ± SD, mmol/l</td>
<td>3.9 ± 0.47</td>
<td>4.0 ± 0.46</td>
<td>.09</td>
</tr>
<tr>
<td>eGFR, mean ± SD, mL/min</td>
<td>90.7 ± 23.7</td>
<td>83.9 ± 18.9</td>
<td>.03</td>
</tr>
</tbody>
</table>

Abbreviations: ARV, antiretroviral; eGFR, estimated glomerular filtration rate; SD, standard deviation.