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The incidence, aetiology, and adverse clinical consequences 
of less severe diarrhoeal episodes among infants and children 
residing in low-income and middle-income countries: 
a 12-month case-control study as a follow-on to the Global 
Enteric Multicenter Study (GEMS)
Karen L Kotloff, Dilruba Nasrin, William C Blackwelder, Yukun Wu*, Tamer Farag†, Sandra Panchalingham, Samba O Sow, Dipika Sur‡, 
Anita K M Zaidi§, Abu S G Faruque, Debasish Saha¶, Pedro L Alonso, Boubou Tamboura, Doh Sanogo, Uma Onwuchekwa, Byomkesh Manna, 
Thandavarayan Ramamurthy, Suman Kanungo, Shahnawaz Ahmed, Shahida Qureshi, Farheen Quadri, Anowar Hossain, Sumon K Das, 
Martin Antonio, M Jahangir Hossain, Inacio Mandomando, Sozinho Acácio, Kousick Biswas, Sharon M Tennant, Jaco J Verweij||, 
Halvor Sommerfelt, James P Nataro**, Roy M Robins-Browne, Myron M Levine

Summary
Background Diarrheal diseases remain a leading cause of illness and death among children younger than 5 years in 
low-income and middle-income countries. The Global Enteric Multicenter Study (GEMS) has described the incidence, 
aetiology, and sequelae of medically attended moderate-to-severe diarrhoea (MSD) among children aged 0–59 months 
residing in censused populations in sub-Saharan Africa and south Asia, where most child deaths occur. To further 
characterise this disease burden and guide interventions, we extended this study to include children with episodes of 
less-severe diarrhoea (LSD) seeking care at health centres serving six GEMS sites.

Methods We report a 1-year, multisite, age-stratified, matched case-control study following on to the GEMS study. 
Six sites (Bamako, Mali; Manhiça, Mozambique; Basse, The Gambia; Mirzapur, Bangladesh; Kolkata, India; and Bin 
Qasim Town, Karachi, Pakistan) participated in this study. Children aged 0–59 months at each site who sought care at a 
sentinel hospital or health centre during a 12-month period were screened for diarrhoea. New (onset after ≥7 diarrhoea-
free days) and acute (onset within the previous 7 days) episodes of diarrhoea in children who had sunken eyes, whose 
skin lost turgor, who received intravenous hydration, who had dysentery, or who were hospitalised were eligible for 
inclusion as MSD. The remaining new and acute diarrhoea episodes among children who sought care at the same 
health centres were considered LSD. We aimed to enrol the first eight or nine eligible children with MSD and LSD at 
each site during each fortnight in three age strata: infants (aged 0–11 months), toddlers (aged 12–23 months), and young 
children (aged 24–59 months). For each included case of MSD or LSD, we enrolled one to three community control 
children without diarrhoea during the previous 7 days. From patients and controls we collected clinical and 
epidemiological data, anthropometric measurements, and faecal samples to identify enteropathogens at enrolment, and 
we performed a follow-up home visit about 60 days later to ascertain vital status, clinical outcome, and interval growth. 
Primary outcomes were to characterise, for MSD and LSD, the pathogen-specific attributable risk and population-based 
incidence values, and to assess the frequency of adverse clinical consequences associated with these two diarrhoeal 
syndromes.

Findings From Oct 31, 2011, to Nov 14, 2012, we recruited 2368 children with MSD, 3174 with LSD, and one to three 
randomly selected community control children without diarrhoea matched to cases with MSD (n=3597) or LSD 
(n=4236). Weighted adjusted population attributable fractions showed that most attributable cases of MSD and LSD 
were due to rotavirus, Cryptosporidium spp, enterotoxigenic Escherichia coli encoding heat-stable toxin (with or without 
genes encoding heat-labile enterotoxin), and Shigella spp. The attributable incidence per 100 child-years for LSD 
versus MSD, by age stratum, for rotavirus was 22·3 versus 5·5 (0–11 months), 9·8 versus 2·9 (12–23 months), and 
0·5 versus 0·2 (24–59 months); for Cryptosporidium spp was 3·6 versus 2·3 (0–11 months), 4·3 versus 0·6 
(12–23 months), and 0·3 versus 0·1 (24–59 months); for enterotoxigenic E coli encoding heat-stable toxin was 
4·2 versus 0·1 (0–11 months), 5·2 versus 0·0 (12–23 months), and 1·1 versus 0·2 (24–59 months); and for Shigella 
spp was 1·0 versus 1·3 (0–11 months), 3·1 versus 2·4 (12–23 months), and 0·8 versus 0·7 (24–59 months). Participants 
with both MSD and LSD had significantly more linear growth faltering than controls at follow-up.

Interpretation Inclusion of participants with LSD markedly expands the population of children who experience 
adverse clinical and nutritional outcomes from acute diarrhoeal diseases. Since MSD and LSD have similar aetiologies, 
interventions targeting rotavirus, Shigella spp, enterotoxigenic E coli producing heat-stable toxin, and Cryptosporidium 
spp might substantially reduce the diarrhoeal disease burden and its associated nutritional faltering.

http://crossmark.crossref.org/dialog/?doi=10.1016/S2214-109X(19)30076-2&domain=pdf
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Introduction 
The Global Enteric Multicenter Study (GEMS) was a 
prospective, age-stratified, matched case-control study of 
the burden, aetiology, and adverse clinical outcomes of 
diarrhoeal diseases among children aged 0–59 months 
seeking care at health-care facilities during a 36-month 
period at seven sites in sub-Saharan Africa and south 
Asia.1,2 GEMS aimed to identify the most clinically severe, 
medically attended diarrhoeal episodes to guide and 
prioritise efforts to prevent the most life-threatening and 
disabling illnesses. It is also important to characterise the 
less-severe diarrhoea (LSD) episodes for which care is 
sought at health-care facilities, recognising that even 
though there might be fewer adverse health consequences 
from LSD, its overall burden could be greater than that of 
moderate-to-severe diarrhoea (MSD) because it is more 
common. Whether there are meaningful differences in 
the distribution of aetiologies of LSD compared with MSD 
must also be understood to optimise diarrhoeal disease 
prevention and treat ment. Herein we describe a 1-year 
follow-on study designated GEMS-1A in which six GEMS 
sites did simultaneous case-control studies of both MSD 
and LSD to measure the pathogen-specific attributable 
risk and population-based incidence for LSD in addition 
to MSD—so the total burden of medically attended 
diarrhoeal disease in low-income and middle-income 

countries could be described—and to assess the frequency 
of adverse clinical consequences of these two syndromes.

Methods 
Study design and participants
GEMS-1A is a 1-year, multisite, age-stratified, matched 
case-control study following on to the GEMS study.1 
Six GEMS sites with moderate-to-high mortality of 
children younger than 5 years participated in GEMS-1A, 
three in Africa (Bamako, Mali; Manhiça, Mozambique; 
and Basse, The Gambia) and three in Asia (Mirzapur, 
Bangladesh; Kolkata, India; and Bin Qasim Town, 
Karachi, Pakistan).1 The estimated number of LSD cases 
at the GEMS site in Kenya was projected to be insufficient 
for participation in GEMS-1A. Participants at each site 
belonged to a censused population serially updated for 
births, deaths, and migrations using a demographic 
surveillance system (DSS). For participant enrolment, 
site investigators selected sentinel hospitals or health 
centres where children included in the DSS sought care 
for diarrhoeal illnesses.1

All children aged 0–59 months belonging to the DSS 
population at each site who sought care at a sentinel 
hospital or health centre during a 12-month period were 
screened for diarrhoea (three or more loose stools during 
the previous 24 h).3 Episodes eligible for inclusion as 

Funding Bill & Melinda Gates Foundation.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. 

Research in context

Evidence before this study
Before this study, we did a systematic review of epidemiological 
studies seeking to determine the causes and adverse sequelae 
of paediatric diarrhoea in low-income countries. We searched 
PubMed for new studies and review articles published between 
Jan 1, 1980, and Aug 31, 2018, using the search string 
(“diarrhea*”[All Fields] OR “gastroenteritis”[All Fields]) AND 
(“pediatric”[All Fields] OR “child*”[All Fields]) AND 
(“*etiology”[All Fields] OR “growth faltering”[All Fields] OR 
“stunting”[All Fields]) AND (“developing countr*”[All Fields] OR 
“low-income”[All Fields]). We included older reports, and 
articles identified in reference lists when appropriate. We 
identified methodologic limitations that led to knowledge gaps 
about the epidemiology of diarrhoeal disease among children 
living in developing countries. We then designed and did the 
Global Enterics Multicenter Study (GEMS) to elucidate the 
incidence, aetiology, and adverse clinical consequences of 
medically attended moderate-to-severe diarrhoea (MSD) 
among children younger than 5 years living in developing 
countries. However, GEMS left unanswered questions about 
whether the findings of GEMS were generalisable to episodes of 
less-severe diarrhoea (LSD), which represent the majority of 
paediatric diarrhoea in patients presenting to health-care 

centres. Therefore, we updated our literature search and 
designed this study to simultaneously examine MSD and LSD.

Added value of this study
Using a rigorous study design and microbiological methods 
capable of detecting a broad array of pathogens across a diverse 
set of study sites with medium and high under-5 mortality, 
we showed that inclusion of LSD defines a far greater burden of 
disease without substantially altering the four most important 
aetiological pathogens involved—ie, rotavirus, Cryptosporidium 
spp, enterotoxigenic Escherichia coli producing heat-stable 
toxin, and Shigella spp. While children with LSD are less acutely 
ill than those with MSD, particularly with regard to dehydration, 
they have similar susceptibility to linear growth faltering 
following their diarrhoeal episode relative to their matched 
healthy controls.

Implications of all the available evidence
These findings expand the population of children experiencing 
adverse clinical and nutritional consequences of acute diarrhoeal 
illness in low-resource settings. Since MSD and LSD have similar 
aetiologies, mitigation of disease associated with a restricted 
number of aetiological agents can substantially reduce the 
diarrhoeal disease burden and its associated nutritional faltering.
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MSD were new (onset after ≥7 diarrhoea-free days) and 
acute (onset within the previous 7 days) episodes in 
children who satisfied at least one of these criteria: had 
sunken eyes (confirmed by parent or caretaker as more 
than normal); decreased skin turgor (abdominal skin 
pinch with slow or very slow [>2 s] recoil); intravenous 
hydration administered or prescribed; had dysentery 
(reported or visible blood in loose stools); or were 
hospitalised.1,2 Eligibility was assessed by the child’s 
clinician in conjunction with the study staff. The 
remaining new and acute diarrhoea episodes among 
children aged 0–59 months of age belonging to the DSS 
who sought care at the same health centres during the 
12-month study period and did not meet the case 
definition of MSD were considered LSD. We aimed to 
enrol the first eight or nine eligible children with MSD 
and LSD at each site during each fortnight in three age 
strata: infants (aged 0–11 months), toddlers (aged 
12–23 months), and young children (aged 24–59 months).1 
For each included case of MSD or LSD, we enrolled 
one-to-three community control children without diar-
rhoea during the previous 7 days.1 Using a computer 
algorithm, at least four children were randomly selected 
from the site’s DSS database among those who matched 
each individual enrolled patient by age, gender, and 
residence (same or nearby village or neighbourhood as 
the patient) according to predefined criteria.1 A field 
worker visited the homes of each selected child and 
sequentially enrolled, within 14 days of the diarrhoeal 
episode, the requisite number of children who met 
eligibility criteria.1

The clinical protocol was ap proved by ethics committees 
at the University of Maryland (Baltimore, MD, USA) and 
those overseeing investigators at the field sites. Written 
informed consent was obtained from the parent or 
primary caretaker of each participant.

Procedures
The primary outcomes of the GEMS-1A study were to 
characterise, for LSD in addition to MSD, the overall 
and pathogen-specific population-based attributable 
incidence and the pathogen-specific attributable fraction, 
and to assess the frequency of nutritional faltering and 
other adverse clinical consequences among children 
with these two diarrhoeal syndromes relative to the 
control population. The outcomes were assessed by site 
and age stratum, and across all sites for incidence and 
nutritional outcomes. Since dysentery was an exclusion 
criterion for LSD, we included a category non-dysentery 
MSD to compare syndromes of watery diarrhoea for 
analyses of attributable fraction and pathogen-specific 
incidence.

Other primary outcomes—eg, the mortality and 
frequency of persistent diarrhoea in children with  LSD 
and MSD—will be published elsewhere.

GEMS-1A generally used the same clinical,1 epide-
miological,1 microbiological,4 data management,5 and 

analytical6 methods described for GEMS, unless 
otherwise specified. At the time of these studies, no 
site had introduced rotavirus vaccine into its Expanded 
Programme on Immunization for infants.

To estimate population-based diarrhoeal disease, we did 
brief surveys on health-care utilisation and attitudes 
concurrent with the GEMS-1A case-control study using 
random samples of children.7 For children who had 
experienced diarrhoea in the previous 7 days, the primary 
caretaker was queried about clinical symptoms and 
health-care use for the episode. For each site and age 
stratum, we calculated the proportion of children who 
were taken to a sentinel hospital or health centre within 
7 days of onset of diarrhoea and the pathogen-specific 
incidence per 100 child-years in the DSS population.6 

At enrolment, parents or primary caretakers of all 
participants underwent standardised interviews to solicit 
demographic, epidemiological, and clinical information. 
GEMS staff measured each child’s length or height.1 
Medical management by clinicians at the sentinel hospital 
or health centre and clinical condition upon discharge 
were documented. A single follow-up home visit was 
done about 60 days after enrolment (range 50–90 days) to 
assess the child’s vital status and repeat anthropometric 
measurements.

At enrolment, each participant provided fresh stool 
that was placed in cold storage and transport media 
according to the protocol.1 If antibiotics were to be 
administered to participants with diarrhoea before stool 
was produced, we obtained two rectal swabs for bacterial 
culture pending passage of the whole stool for the 
remaining assays.1

Putative enteropathogens (Salmonella, Shigella, Campy
lobacter, Aeromonas, and Vibrio spp, diarrhoeagenic 
Escherichia coli [enterotoxigenic, enteropathogenic, entero-
aggregative, and Shiga toxin-producing], rotavirus, adeno-
virus serotypes 40 and 41, norovirus genotypes I and II, 
sapovirus, astrovirus, Giardia intestinalis, Entamoeba 
histolytica, and Cryptosporidium spp) were identified in 
cases and controls as previously described4 with some 
exceptions. E coli strains were first tested using a 
multiplex PCR as described for GEMS.4 An additional 
duplex PCR (appendix) was incorporated with primers to 
detect E coli encoding porcine heat-stable toxin and with 
alternative primers that detect eae but that generate a 
smaller eae amplicon than the first multiplex PCR. E coli 
that were eae+ and bfp– were subsequently tested for bfp 
in a monoplex PCR. E coli that were eae+ and bfp– 
were subsequently tested using a multiplex PCR with 
primers for stx1, stx2, eae, efa1 (enterohaemorrhagic 
E coli), and sen (enteropathogenic E coli). We also detected 
a Helicobacter pylori antigen by the Amplified IDEIA Hp 
StAR immunoassay (Oxoid, Thermofisher, Cambridge, 
UK), intestinal geohelminths (Ascaris lumbricoides, 
Strongyloides stercoralis, and human hook worms [Necator 
americanus and Ancylostoma duodenale]) using multiplex 
real-time PCR,8,9 Bacteroides fragilis enterotoxin gene (bftP) 

See Online for appendix
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by gel-based PCR on DNA extracted from stools,10 and 
Clostridium difficile using the C diff Quik Chek Complete 
dual antigen immunoassay (TechLab, Blacksburg VA, 
USA) by finding positivity to C difficile glutamate-
dehydrogenase antigen and identifying the presence of 
toxins A or B.

Statistical analysis
The analytic methods used in GEMS-1A followed those 
used in GEMS,11 with the additions described in this 
section. We used Wald χ² tests to compare proportions 
of children with MSD or LSD and their matched con-
trols with different demographic features. In separate 
analyses for MSD, non-dysentery MSD, and LSD, 
associations with potential pathogens were assessed 
with conditional logistic regression12 with a penalised 
likelihood approach.13 In brief, a weighted population 
attributable fraction14 for each pathogen significantly 
associated with MSD or LSD was derived for each site 
and age stratum from a multiple conditional logistic 
regression model that adjusted for the presence of 
other pathogens and interactions between pathogens. 
Pathogens were included in the multiple conditional 
logistic regression model if they were significant (p<0·1) 
in a bivariate analysis and remained after a process of 
backward elimination which used a prespecified p-value 
cutoff of 0·05. The pathogen-specific attributable 
fractions of non-dysentery MSD and LSD were compared 
by calculating a Z score for their difference, with the 
standard deviation of each attributable fraction estimated 
by jackknife.15

Once the attributable fraction for each pathogen was 
determined for each site and age stratum, we used the 
proportion of children with MSD or LSD taken to one of 
the site’s sentinel hospitals or health centres—obtained 
from the data from the health-care utilisation and 
attitudes surveys—to calculate the pathogen-specific 
attributable incidence per 100 child-years in the DSS 
population.6 This method assumes that the distributions 
of aetiologies of MSD and LSD for children who sought 
care at the sentinel hospital or health centre were similar 
to the distributions for children who did not seek care. 
To assess this assumption, we used the data from the 
health-care utilisation and attitudes surveys to quali-
tatively compare the severity of illness as determined by 
caretakers’ reports of the clinical features of children 
with MSD and LSD who did and did not seek care at a 
sentinel hospital or health centre.

For LSD, MSD, and non-dysentery MSD, overall 
pathogen-specific attributable incidence within each 
age group were calculated as the sum over sites of 
attributable cases (attributable fraction multiplied by 
total cases at sentinel hospitals or health centres and 
divided by the proportion of children with MSD or LSD 
taken to one of the site’s sentinel hospitals or health 
centres), divided by the sum over sites of median DSS 
population. Standard errors of attributable incidence 

15 896 patients from the DSS 
with diarrhoea presented 
at the hospital and 
assessed for eligibility

 

970 ineligible*
 

9384 excluded from 
enrolment
1349 with MSD
8035 with LSD

14 926 eligible
3717 eligible as MSD case
11 209 eligible as LSD case

7833 control children selected†

13 375 enrolled and included in 
aetiology analysis
5542 patients

2368 with MSD
3174 with LSD

7833 controls
3597 controls (MSD)
4236 controls (LSD)

659 dropped out
333 patients

133 with MSD
200 with LSD

326 controls
164 controls (MSD)
162 controls (LSD)

45 died
23 with MSD
12 with LSD

3 controls (MSD)
7 controls (LSD)

12 671 followed up
5174 patients

2212 with MSD
2962 with LSD

7497 controls
3430 controls (MSD)
4067 controls (LSD)

11 655 included in nutrition 
analysis
4894 patients

2087 with MSD
2807 with LSD

6761 controls
3076 controls (MSD)
3685 controls (LSD)

1016 excluded from nutrition 
analysis‡
280 patients

125 with MSD
155 with LSD

736 controls
354 controls (MSD)
382 controls (LSD)

Figure 1: Study profile
LSD=less-severe diarrhoea. 
MSD= moderate-to-severe 

diarrhoea. *Children were 
ineligible if their diarrheal 

episode had not started in 
the past 7 days after 

7 diarrhea-free days, or if they 
were currently enrolled in the 

study and undergoing 
follow-up. †1–3 controls 

matched for age, gender, time 
of case presentation, and 

location of residence were 
selected randomly from the 

census database and given a 
stool collection kit; the first to 
produce a stool was enrolled; 

therefore, no controls were 
excluded. ‡Cases and controls 

were excluded from the 
nutritional analysis if they met 

criteria for an implausible value 
for height for age at 

enrollment or change in height 
over the follow-up period.
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values were approximated using Taylor series to first 
derivative terms.

We derived length-for-age or height-for-age Z scores 
(HAZs) using WHO standards.11,16 Weighted HAZ means 

at enrolment for patients and controls were compared 
using weighted paired t tests; when a patient had multiple 
controls, the average enrolment HAZ was used. The same 
weights used for the diarrhoeal aetiology analysis were 
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Figure 2: Adjusted attributable fraction of pathogens significantly associated with LSD, non-dysentery MSD, and MSD, by site in the 0–11 months’ age group
Adjusted attributable fractions are expressed as weighted percent of total diarrhoeal episodes. Bars are 95% CIs. Differences in pathogen frequency according to the severity of watery diarrhoea were 
evaluated by comparing non-dysentery MSD versus LSD using Z scores of the differences between non-dysentery MSD versus LSD. AdV=adenovirus.  C jejuni=Campylobacter jejuni. CDT=Clostridium 
difficile toxin. Crypto=Cryptosporidium spp. E coli=Escherichia coli. ET=enterotoxigenic. H pylori=Helicobacter pylori. LSD=less-severe diarrhoea. MSD=moderate-to-severe diarrhoea. NV GII=norovirus GII. 
RV=rotavirus. ST=heat-stable-toxin producing. SV=sapovirus. tEP=typical enteropathogenic.
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used for the weighted paired t tests.6 These weights were 
also used in weighted linear regression analyses comparing 
baseline HAZ scores in patients with MSD and patients 
with LSD. We compared changes in HAZ from enrolment 

to follow-up in patients and controls using weighted 
linear regression models for all possible matched pairs, 
adjusting for enrolment HAZ and duration of follow-up 
and using jack-knife estimates of standard error.15

Figure 3: Adjusted attributable fraction of pathogens significantly associated with LSD, non-dysentery MSD, and MSD, by site in the 12–23 months’ age group
Adjusted attributable fractions are expressed as weighted percent of total diarrhoeal episodes. Bars are 95% CIs. Differences in pathogen frequency according to the severity of watery diarrhoea were 
evaluated by comparing non-dysentery MSD versus LSD using Z scores of the differences between non-dysentery MSD versus LSD. AdV=adenovirus. AstroV=astrovirus. CDT=Clostridium difficile toxin. 
Crypto=Cryptosporidium spp. EA=enteroaggregative. E coli=Escherichia coli. E histolytica=Entamoeba histolytica. ET=enterotoxigenic. H pylori=Helicobacter pylori. LSD=less-severe diarrhoea. 
MSD=moderate-to-severe diarrhoea. NV GII=norovirus GII. RV=rotavirus. ST=heat-stable-toxin producing. SV=sapovirus. V cholerae=Vibrio cholerae.
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Results with two-sided p values less than 0·05 were con-
sidered significant. We did not apply any adjust ment for 
multiple comparisons. Statistical analyses were per formed 
in SAS version 9, SPSS version 24, and R version 3.3.2.

Role of the funding source
The funder of the study played no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had 
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Figure 4: Adjusted attributable fraction of pathogens significantly associated with LSD, non-dysentery MSD, and MSD, by site in the 24–59 months’ age group
Adjusted attributable fractions are expressed as weighted percent of total diarrhoeal episodes. Bars are 95% CIs. Differences in pathogen frequency according to the severity of watery diarrhoea 
were evaluated by comparing non-dysentery MSD versus LSD using Z scores of the differences between non-dysentery MSD versus LSD. B fragilis=Bacteroides fragilis. Crypto=Cryptosporidium spp. 
E coli=Escherichia coli. E histolytica=Entamoeba histolytica. ET=enterotoxigenic. H pylori=Helicobacter pylori. LSD=less-severe diarrhoea. MSD=moderate-to-severe diarrhoea. NV GII=norovirus GII. 
RV=rotavirus. ST=heat-stable-toxin producing. SV=sapovirus. V cholerae=Vibrio cholerae.
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full access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
During a 12-month period between Oct 31, 2011, and 
Nov 14, 2012, children aged 0–59 months of age included 
in the DSS at six study sites (Bamako, Mali; Manhiça, 
Mozambique; Basse, The Gambia; Mirzapur, Bangladesh; 
Kolkata, India; and Bin Qasim Town, Karachi, Pakistan) 
collectively made 192 086 visits to the study sentinel 
hospitals or health centres, of which 15 896 (8·3%) were 
by children experiencing diarrhoea; 11 209 (75·1%) of the 
14 926 children with acute, new onset diarrhea had LSD 
and 3717 (24·9%) had MSD. 2368 (63·7%) of 3717 children 
with MSD and 3174 (28·3%) of 11 209 with LSD were 
enrolled and analysable along with 3597 controls matched 
to patients with MSD and 4236 controls matched to 
patients with LSD (figure 1). 23 (1·0%) of 2368 children 
with MSD, 12 (0·4%) of 3174 children with LSD, three 
(<0·1%) of 3597 MSD controls, and seven (<0·1%) of 
4236 LSD controls died after enrolment. Among living 
children, a 60-day follow-up household visit was com-
pleted for 2212 (94·3%) of 2345 children with MSD 
and 2962 (93·7%) of 3162 children with LSD, and for 
3430 (95·4%) of 3594 MSD controls and 4067 (96·2%) of 
4229 LSD controls. When we compared the demographic 

features of children with LSD (appendix) and MSD 
(appendix) to their matched controls, no trends were 
apparent. The proportion of MSD and LSD episodes (all 
sites combined) reported by caretakers during the health-
care utilisation and attitudes surveys that met WHO 
criteria for dehydration was similar among children who 
did and did not seek care at a sentinel hospital or health 
centre (appendix).

Figure 2, figure 3, and figure 4 show the attributable 
fractions of the pathogens that were significantly 
associated with MSD, non-dysentery MSD, and LSD. 
During infancy (figure 2), rotavirus was the most common 
pathogen associated with non-dysentery MSD at every 
site, with overall MSD at all sites except Bangladesh 
(where Shigella was also an important cause of MSD), and 
with LSD at all sites except India. It predominated as a 
cause of MSD and LSD at all sites at age 12–23 months 
(figure 3), and at three sites each for MSD and LSD in 
the oldest stratum (figure 4). Cryptosporidium spp ranked 
second as a cause of MSD among infants at four sites 
(The Gambia, Mali, Mozambique, and Pakistan); among 
toddlers it ranked first or second in two sites (The Gambia 
[ for both MSD and non-dysentery MSD] and Mozambique 
[ for non-dysentery MSD]) and was significantly associated 
with LSD among infants at four sites (The Gambia, 
Mozambique, India, and Pakistan), toddlers at five sites 

The Gambia Mali Mozambique India Bangladesh Pakistan Total

0–11 months

LSD 67·9 
(17·1–118·6)

98·3 
(0·0–242·3)

65·6 
(0·0–175·9)

82·6 
(45·1–120·2)

118·4 
(0·0–290·6)

161·4 
(82·1–240·7)

105·0 
(53·4–156·6)

Total MSD 15·2 
(3·2–27·1)

35·7 
(0·0–82·2)

5·2 
(0·0–13·6)

51·7 
(24·8–78·5)

9·7 
(1·2–18·3)

43·1 
(10·2–76·0)

27·7 
(13·2–42·3)

Non–dysenteric MSD 12·2 
(2·0–22·4)

29·3 
(0·0–67·4)

4·3 
(0·0–11·3)

50·7 
(22·6–78·7)

1·7 
(0·2–3·3)

32·2 
(7·6–56·7)

21·7 
(10·0–33·5)

LSD + MSD 83·0 
(30·9–135·2)

134·0 
(0·0–285·3)

70·8 
(0·0–181·5)

134·3 
(88·2–180·5)

128·1 
(0·0–300·5)

204·4 
(118·6–290·3)

132·7 
(79·1–186·3)

12–23 months

LSD 48·8 
(14·9–82·7)

57·6 
(0·0–143·2)

53·2 
(0·0–109·5)

89·6 
(27·4–151·8)

23·3 
(2·3–44·4)

189·4 
(71·7–307·1)

72·2 
(42·8–101·5)

Total MSD 20·5 
(5·3–35·7)

33·6 
(0·0–72·3)

6·7 
(0·0–16·4)

51·5 
(10·4–92·6)

11·5 
(0·0–27·1)

21·0 
(5·7–36·2)

23·2 
(11·9–34·4)

Non–dysenteric MSD 11·5 
(2·7–20·4)

25·2 
(0·0–54·6)

6·1 
(0·0–23·0)

52·8 
(5·8–99·7)

1·8 
(0·0–4·1)

14·7 
(3·6–25·7)

16·4 
(7·6–25·1)

LSD + MSD 69·3 
(32·1–106·4)

91·2 
(0·0–185·2)

59·9 
(2·8–117·1)

141·1 
(66·5–215·7)

34·8 
(8·6–61·0)

210·4 
(91·7–329·0)

95·3 
(63·9–126·8)

24–59 months

LSD 8·2 
(1·6–14·7)

17·6 
(0·0–38·6)

9·8 
(0·0–24·7)

21·0 
(9·0–33·0)

7·8 
(0·0–23·1)

32·9 
(10·2–55·5)

16·3 
(9·0–23·6)

Total MSD 3·1 
(0·2–5·9)

5·7 
(0·3–11·1)

1·0 
(0·0–2·7)

30·5 
(0·0–73·2)

3·8 
(0·0–8·7)

2·5 
(0·7–4·4)

5·9 
(1·8–9·9)

Non–dysenteric MSD 1·7 
(0·0–3·5)

5·5 
(0·7–10·3)

0·5 
(0·0–1·4)

20·2 
(0·0–48·5)

0·6 
(0·0–1·3)

1·4 
(0·4–2·5)

3·8 
(1·1–6·5)

LSD + MSD 11·2 
(4·1–18·4)

23·3 
(1·6–45·0)

10·8 
(0·0–25·8)

51·5 
(7·1–95.8)

11·6 
(0·0–27·7)

35·4 
(12·7–58·1)

22·2 
(13·8–30·6)

Data are incidence per 100 child-years (95% CI).

Table 1: Incidence of moderate–to–severe diarrhoea (MSD) and less–severe diarrhoea (LSD) per 100–child–years of observation by site and age stratum
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(The Gambia, Mali, Mozambique, Pakistan, and India), 
and older children at two sites (The Gambia and Pakistan). 
The attributable fraction of Shigella spp increased with 
age and was significantly associated with MSD or LSD, 
or both, at two sites during infancy (Bangladesh and 
Pakistan) and five sites (all sites except Mali) in each of 
the older strata. Adenovirus 40 and 41 was associated 
with diarrhoea at three sites (India,  Bangladesh, and 
Mozambique) and norovirus GII at two sites (India and 
Bangladesh). H pylori was significantly associated with 
diarrhoea at four sites; in India the association was seen in 
all age groups, while it was observed in a single age group 
in the other three sites (Pakistan, Bangladesh, and Mali).

Differences in pathogen frequency according to the se-
verity of watery diarrhoea were evaluated by com paring 

non-dysentery MSD versus LSD. Significant differences 
were observed only in the two youngest age groups 
(figure 2; figure 3). Two pathogens were significantly 
more common in non-dysentery MSD compared to LSD: 
rotavirus at four sites (India, Bangladesh, Mozambique, 
and Pakistan) in the first year of life and at one site in the 
12–23 month age group (India), and Cryptosporidium spp 
at two sites in the first year of life (Pakistan and 
Mozambique) and at one site in the second year of life 
(The Gambia). Some pathogens, such as Vibrio cholerae 
O1, Aeromonas spp, astrovirus, Campylobacter jejuni, 
toxigenic C difficile, and norovirus GII, were significantly 
associated with diarrhoea only in Asia. As a result, the 
diversity of pathogens appeared greater at the Asian 
sites compared with the African sites.
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Figure 5: Attributable incidence of pathogen-specific LSD per 100 child-years of observation, by age stratum, all sites combined
Bars show the incidence values and error bars show the 95% CIs. B fragilis=Bacteroides fragilis. C difficile=Clostridium difficile. E coli=Escherichia coli. ET=enterotoxigenic. 
H pylori=Helicobacter pylori. LSD=less-severe diarrhoea. ST=heat-stable-toxin producing. tEP=typical enteropathogenic. 
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The overall incidence of LSD among infants from 
the DSS population (105·0 episodes per 100 child-years, 
95% CI 53·4–156·6) was 3·8 times higher than that of 
MSD (27·7 episodes per 100 child-years, 13·2–42·3), 
and 4·8 times higher than that of non-dysentery MSD 
(21·7 episodes per 100 child-years, 10·0–33·5; table 1). 
When the pathogen-specific attributable incidence was 
examined across the six sites, the incidence of rotavirus 
was highest in relation to the other pathogens for 
LSD (22·3 episodes per 100 child-years, 9·4–35·2) and 
non-dysenteric MSD (5·4 episodes per 100 child-years, 
2·6–8·2) during infancy, and continued to prevail among 

toddlers at a lower level (figure 5; figure 6). Cryptosporidium 
spp contributed the second highest inci dence of non-
dysenteric MSD among infants (2·1 episodes per 
100 child-years, 0·8–3·4) and toddlers (0·9 episodes per 
100 child-years, 0·1–1·6), while ranking third among 
infants and fourth among toddlers as a cause of LSD. 
Shigella spp had the third highest incidence for MSD 
among infants (1·3 episodes per 100 child-years, 0·3–2·3), 
the second among toddlers (2·4 episodes per 100 child-
years, 0·6–4·1), and the first among older children 
(0·7 episodes per 100 child-years, 0·1–1·3); it ranked 
lower as a cause of non-dysenteric MSD and LSD. The 
incidence of MSD and non-dysenteric MSD caused by 
enterotoxigenic E coli producing heat-stable toxin was less 
than 0·2 per 100 child-years in all groups except infants 
with non-dysenteric MSD (0·7 episodes per 100 child-
years, 0·0–1·4); by contrast, the incidence of LSD caused 
by enterotoxigenic E coli producing heat-stable toxin 
was 4·2 per 100 child-years (1·0–7·4) among infants, 
5·2 per 100 child-years (1·6–8·7) among toddlers, and 
1·1 per 100 child-years (0·2–2·0) among young children, 
ranking second to rotavirus in the infant and toddler 
groups and ranking first among the young-children 
group. One notable finding is the appearance of H pylori 
in the top five ranking agents in nearly all age groups.

At enrolment, the weighted mean HAZ of both patients 
and controls was well below the WHO reference value; 
however, patients with both LSD (table 2) and MSD 
(table 3) had similar HAZs to their matched controls (all 
sites combined within age groups), with the exception of 
the infant stratum in the MSD analysis (table 3). At the 
follow-up visit, patients in the two highest age strata had 
significantly more linear growth faltering than controls 
after LSD and after MSD (table 2; table 3).

Children with MSD had significantly lower enrolment 
mean HAZs than those with LSD in seven of the 
18 site-specific age strata (ie, three age strata in six sites for 
a total of 18 strata; table 4). However, when all sites were 
combined in age stratum-specific analyses, significant 
differences were no longer apparent (table 4). Children 
with MSD had significantly more growth faltering over 
the approximately 60-day follow-up period than children 
with LSD in four of the 18 strata. When all sites were 
combined, a significant difference was seen in the infant 
stratum (table 4).

We examined patient management according to clinical 
syndrome. While at the sentinel hospital or health centre, 
oral rehydration salts were given to 471 (19·9%) of 
2345 children with MSD and 74 (2·3%) of 3174 children 
with LSD; by contrast, most children (5133 [92·6%] of 
5542) received a prescription for oral rehydration salts to 
be adminis tered at home. A prescription for zinc was 
given to 2601 (46·9%) of 5542 children. At the sentinel-
hospital or health-centre visit, antibiotics were admin-
istered to 93 (12·7%) of 730 children with dysentery, to 
281 (17·2%) of 1638 children with non-dysentery MSD, 
and to 38 (1·2%) of 3174 children with LSD; 557 (76·3%) 

Figure 6:  Attributable incidence of pathogen-specific moderate-to-severe diarrhoea (MSD) and 
non-dysentery MSD, per 100 child-years of observation, by age stratum, all sites combined 
Bars show the incidence values and error bars show the 95% CIs. B fragilis=Bacteroides fragilis. C jejuni=Campylobacter 
jejuni. C difficile=Clostridium difficile. EA=enteroaggregative. E coli=Escherichia coli. E histolytica=Entamoeba histolytica. 
ET=enterotoxigenic. H pylori=Helicobacter pylori. ST=heat-stable-toxin producing. V cholerae=Vibrio cholerae.
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0–11 months 12–23 months 24–59 months

Weighted mean (95% CI) p value Weighted mean (95% CI) p value Weighted mean (95% CI) p value

Basse, The Gambia

Number of participants 199 patients; 228 controls ·· 183 patients; 236 controls ·· 120 patients; 212 controls ··

Enrolment HAZ

Patients –0·56 (–0·74 to –0·38) 0·23 –1·21 (–1·39 to –1·03) 0·73 –1·43 (–1·63 to –1·23) 0·69

Controls –0·44 (–0·62 to –0·27) ·· –1·19 (–1·35 to –1·04) ·· –1·45 (–1·60 to –1·29) ··

ΔHAZ

Patients –0·27 (–0·35 to –0·20) 0·67 –0·23 (–0·28 to –0·17) 0·14 –0·10 (–0·15 to –0·05) 0·10

Controls –0·23 (–0·31 to –0·14) ·· –0·14 (–0·19 to –0·09) ·· 0·01 (–0·03 to 0·05) ··

Bamako, Mali

Number of participants 204 patients; 204 controls ·· 201 patients; 202 controls ·· 208 patients; 208 controls ··

Enrolment HAZ

Patients –0·57 (–0·72 to –0·41) 0·81 –0·88 (–1·04 to –0·72) 0·10 –1·07 (–1·22 to –0·93) 0·17

Controls –0·63 (–0·81 to –0·46) ·· –1·06 (–1·21 to –0·91) ·· –0·92 (–1·07 to –0·77) ··

ΔHAZ

Patients –0·37 (–0·44 to –0·31) 0·31 –0·08 (–0·11 to –0·04) 0·39 0·06 (0·03 to 0·09) 0·18

Controls –0·32 (–0·39 to –0·25) ·· –0·04 (–0·09 to 0·01) ·· 0·07 (0·05 to 0·10) ··

Manhiça, Mozambique

Number of participants 136 patients; 136 controls ·· 148 patients; 148 controls ·· 81 patients; 81 controls ··

Enrolment HAZ

Patients –0·83 (–1·04 to –0·63) 0·61 –1·30 (–1·51 to –1·10) 0·033 –1·52 (–1·80 to –1·24) 0·56

Controls –0·91 (–1·10 to –0·73) ·· –1·57 (–1·75 to –1·39) ·· –1·63 (–1·86 to –1·40) ··

ΔHAZ

Patients –0·03 (–0·15 to 0·08) 0·64 –0·04 (–0·11 to 0·04) 0·65 –0·03 (–0·09 to 0·02) 0·020

Controls –0·07 (–0·18 to 0·04) ·· –0·03 (–0·11 to 0·05) ·· 0·05 (0·00 to 0·11) ··

Kolkata, India

Number of participants 194 patients; 194 controls ·· 171 patients; 183 controls ·· 175 patients; 181 controls ··

Enrolment HAZ

Patients –1·12 (–1·28 to –0·97) 0·95 –1·47 (–1·64 to –1·30) 0·28 –1·74 (–1·91 to 1·56) 0·39

Controls –1·13 (–1·28 to –0·98) ·· –1·29 (–1·44 to –1·15) ·· –1·64 (–1·80 to –1·47) ··

ΔHAZ

Patients –0·10 (–0·15 to –0·06) 0·12 –0·07 (–0·09 to –0·04) 0·42 –0·03 (–0·04 to –0·02) 0·72

Controls –0·05 (–0·09 to –0·01) ·· –0·02 (–0·06 to 0·01) ·· –0·03 (–0·04 to –0·01) ··

Mirzapur, Bangladesh

Number of participants 176 patients; 344 controls ·· 146 patients; 287 controls ·· 82 patients; 243 controls ··

Enrolment HAZ

Patients –1·06 (–1·26 to –0·85) 0·60 –1·05 (–1·23 to –0·88) 0·13 –0·98 (–1·20 to –0·76) 0·0058

Controls –1·05 (–1·19 to –0·92) ·· –1·32 (–1·44 to –1·19) ·· –1·43 (–1·56 to –1·30) ··

ΔHAZ

Patients –0·21 (–0·29 to –0·14) 0·67 –0·16 (–0·22 to –0·10) 0·24 –0·09 (–0·13 to –0·05) 0·28

Controls –0·23 (–0·27 to –0·18) ·· –0·11 (–0·15 to –0·08) ·· –0·05 (–0·07 to –0·02) ··

Karachi (Bin Qasim Town), Pakistan

Number of participants 161 patients; 162 controls ·· 133 patients; 219 controls ·· 89 patients; 217 controls ..

Enrolment HAZ

Patients –1·31 (–1·50 to –1·12) 0·71 –2·04 (–2·27 to –1·81) 0·18 –2·34 (–2·67 to –2·02) 0·73

Controls –1·26 (–1·49 to –1·03) ·· –1·97 (–2·13 to –1·81) ·· –2·28 (–2·45 to –2·11) ··

ΔHAZ

Patients –0·09 (–0·19 to 0·01) 0·18 –0·28 (–0·36 to –0·20) 0·0012 –0·04 (–0·11 to 0·02) 0·0043

Controls –0·16 (–0·26 to –0·06) ·· –0·16 (–0·21 to –0·10) ·· 0·06 (0·02 to 0·09) ··

(Table 2 continues on next page)
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0–11 months 12–23 months 24–59 months

Weighted mean (95% CI) p value Weighted mean (95% CI) p value Weighted mean (95% CI) p value

(Continued from previous page)

All sites combined

Number of participants 1070 patients; 1268 controls ·· 982 patients; 1275 controls ·· 755 patients; 1142 controls ··

Enrolment HAZ

Patients –0·98 (–1·07 to –0·88) 0·70 –1·47 (–1·58 to –1·37) 0·96 –1·79 (–1·94 to –1·64) 0·87

Controls –0·95 (–1·04 to –0·85) ·· –1·55 (–1·63 to –1·47) ·· –1·88 (–1·98 to –1·77) ··

ΔHAZ

Patients –0·16 (–0·21 to –0·12) 0·23 –0·18 (–0·21 to –0·15) 0·0040 –0·04 (–0·07 to –0·01) <0·0001

Controls –0·18 (–0·22 to –0·14) ·· –0·11 (–0·14 to –0·09) ·· 0·03 (0·01 to 0·55) ··

Enrolment HAZ in patients versus controls was compared by weighted paired t test; ΔHAZ in patients versus controls was compared by weighted linear regression, adjusting 
for enrolment HAZ and duration to follow–up. HAZ=length–for–age or height–for–age Z score. ΔHAZ=change in HAZ (ie, HAZ at follow–up visit [50–90 days after enrolment] 
minus HAZ at enrolment). 

Table 2: Comparison of enrolment HAZ and ΔHAZ between patients with less severe diarrhoea and their matched controls, by site

0–11 months 12–23 months 24–59 months

Weighted mean (95% CI) p value Weighted mean (95% CI) p value Weighted mean (95% CI) p value

Basse, The Gambia

Number of participants 103 patients; 155 controls ·· 131 patients; 199 controls ·· 62 patients; 135 controls ··

Enrolment HAZ

Patients –0·90 (–1·12 to –0·68) 0·30 –1·53 (–1·73 to –1·33) 0·26 –1·82 (–2·08 to –1·55) 0·30

Controls –0·70 (–0·90 to –0·50) ·· –1·35 (–1·54 to –1·15) ·· –1·53 (–1·69 to –1·36) ··

ΔHAZ

Patients –0·37 (–0·47 to –0·26) 0·93 –0·30 (–0·37 to –0·24) 0·091 –0·03 (–0·10 to 0·05) 0·57

Controls –0·20 (–0·29 to –0·12) ·· –0·09 (–0·15 to –0·03) ·· 0·08 (0·04 to 0·13) ··

Bamako, Mali

Number of participants 206 patients; 206 controls ·· 206 patients; 206 controls ·· 191 patients; 191 controls ··

Enrolment HAZ

Patients –0·50 (–0·64 to –0·36) 0·31 –1·15 (–1·29 to –1·00) 0·67 –1·18 (–1·35 to –1·00) 0·41

Controls –0·57 (–0·76 to –0·38) ·· –1·04 (–1·18 to –0·90) ·· –1·06 (–1·22 to –0·89) ··

ΔHAZ

Patients –0·40 (–0·45 to –0·34) 0·17 –0·09 (–0·13 to –0·05) 0·14 0·06 (0·03 to 0·09) 0·18

Controls –0·34 (–0·41 to –0·27) ·· –0·04 (–0·08 to 0·00) ·· 0·11 (0·08 to 0·14) ··

Manhiça, Mozambique

Number of participants 55 patients; 145 controls ·· 37 patients;101 controls ·· 22 patients; 60 controls ··

Enrolment HAZ

Patients –1·39 (–1·77 to –1·01) 0·050 –1·66 (–2·18 to –1·14) 0·62 –1·07 (–1·59 to –0·55) 0·033

Controls –0·74 (–0·91 to –0·57) ·· –1·52 (–1·74 to –1·30) ·· –1·45 (–2·02 to –0·88) ··

ΔHAZ

Patients –0·01 (–0·16 to –0·15) 0·62 –0·27 (–0·39 to –0·14) 0·038 0·10 (–0·04 to 0·23) 0·72

Controls –0·08 (–0·17 to –0·02) ·· –0·01 (–0·09 to 0·07) ·· 0·08 (0·01 to 0·15) ··

Kolkata, India

Number of participants 189 patients; 190 controls ·· 147 patients; 160 controls ·· 163 patients; 186 controls ··

Enrolment HAZ

Patients –1·12 (1·26 to –0·98) 0·70 –1·30 (–1·48 to –1·12) 0·66 –1·90 (–2·09 to –1·71) 0·29

Controls –1·14 (–1·30 to –0·98) ·· –1·44 (–1·65 to –1·24) ·· –1·61 (–1·76 to –1·45) ··

ΔHAZ

Patients –0·07 (–0·11 to –0·02) 0·41 –0·06 (–0·09 to –0·04) 0·47 –0·01 (–0·02 to 0·01) 0·87

Controls –0·02 (–0·06 to 0·02) ·· –0·04 (–0·07 to –0·01) ·· –0·01 (–0·02 to 0·00) ··

(Table 3 continues on next page)
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of 730 children with dysentery, 573 (34·9%) of 
1638 children with non-dysentery MSD, and 1788 (56·3%) 
of 3174 children with LSD received a prescription for 
antibiotics for administration at home after discharge 
from the sentinel hospital or health centre.

Discussion
Results from this study corroborate several important 
observations from GEMS about the aetiology and adverse 
clinical consequences of MSD among children under 
5 years of age living in low-income communities in 
sub-Saharan Africa and south Asia, and extend those 
findings to a much broader population of children.2 
GEMS demonstrated that four pathogens (rotavirus, 
Cryptosporidium spp, enterotoxigenic E coli producing heat-
stable toxin, and Shigella spp) were responsible for the 
majority of attributable MSD cases. Inclusion of LSD in 
the current study revealed a far greater burden contributed 
by these pathogens. By estimating the attributable fraction 
and the attributable incidence of pathogen-specific MSD 
and LSD, our data not only show the proportion of episodes 
that might be prevented by using an effective intervention, 
but also characterise the public health impact that such an 

intervention might have.17 Even if a vaccine were less 
effective against LSD than MSD, as has been the case for 
rotavirus vaccines,18 the vaccine would be expected to 
prevent many more episodes of LSD than of MSD.

Children with MSD in general were not more stunted 
at baseline than those with LSD. Thus, we cannot attribute 
the increased severity of their diarrhoeal illness to their 
pre-existing linear growth faltering. Moreover, despite 
evident differences in illness severity, children with both 
syndromes demonstrated linear growth faltering relative 
to their matched healthy controls during the 2–3 months 
after their illness. These findings illustrate the importance 
of preventing both LSD and MSD from the perspective of 
mitigating the adverse nutritional consequences of 
young-child diarrhoeal illness.

This study also provided a broad view of the patient 
management of diarrhoeal disease at health centres 
in Africa and Asia. The purported trends toward 
diminishing prioritisation and funding of diarrhoea 
control programmes in low-income and middle-income 
countries19 are perhaps reflected in the suboptimal 
centre-based administration of oral rehydration salts at 
our sites. Few children actually received these fluids 

0–11 months 12–23 months 24–59 months

Weighted mean (95% CI) p value Weighted mean (95% CI) p value Weighted mean (95% CI) p value

(Continued from previous page)

Mirzapur, Bangladesh

Number of participants 121 patients; 241 controls ·· 102 patients; 201 controls ·· 93 patients; 270 controls ··

Enrolment HAZ

Patients –1·05 (–1·24 to –0·85) 0·071 –1·30 (–1·53 to –1·06) 0·95 –1·29 (–1·51 to –1·07) 0·52

Controls –1·00 (–1·15 to –0·86) ·· –1·31 (–1·47 to –1·15) ·· –1·42 (–1·55 to –1·29) ··

ΔHAZ

Patients –0·20 (–0·30 to –0·10) 0·36 –0·11 (–0·16 to –0·06) 0·51 –0·09 (–0·13 to –0·05) 0·016

Controls –0·25 (–0·31 to –0·20) ·· –0·07 (–0·12 to –0·03) ·· –0·05 (–0·08 to –0·03) ··

Karachi (Bin Qasim Town), Pakistan

Number of participants 108 patients; 108 controls ·· 89 patients; 163 controls ·· 62 patients; 159 controls ··

Enrolment HAZ

Patients –1·68 (–1·92 to –1·43) 0·065 –2·08 (–2·33 to –1·83) 0·84 –2·55 (–2·89 to –2·22) 0·42

Controls –1·24 (–1·48 to –1·00) ·· –2·03 (–2·23 to –1·83) ·· –2·32 (–2·52 to –2·13) ··

ΔHAZ

Patients –0·17 (–0·29 to –0·05) 0·88 –0·20 (–0·31 to –0·10) 0·26 –0·09 (–0·17 to –0·02) 0·071

Controls –0·22 (–0·35 to –0·10) ·· –0·12 (–0·20 to –0·04) ·· 0·01 (–0·04 to 0·07) ··

All sites combined

Number of participants 782 patients; 1045 controls ·· 712 patients; 1030 controls ·· 593 patients; 1001 controls ··

Enrolment HAZ

Patients –1·07 (–1·16 to –0·98) 0·030 –1·50 (–1·59 to –1·40) 0·31 –1·69 (–1·81 to –1·57) 0·35

Controls –0·89 (–0·97 to –0·82) ·· –1·48 (–1·57 to –1·40) ·· –1·65 (–1·73 to –1·56) ··

ΔHAZ

Patients –0·23 (–0·27 to –0·19) 0·41 –0·17 (–0·21 to –0·14) 0·0002 –0·02 (–0·04 to 0·00) 0·0061

Controls –0·19 (–0·23 to –0·16) ·· –0·07 (–0·10 to –0·05) ·· 0·02 (0·00 to 0·04) ··

Enrolment HAZ in patients versus controls was compared by weighted paired t test; ΔHAZ in patients versus controls was compared by weighted linear regression, adjusting 
for enrolment HAZ and duration to follow–up. HAZ=length–for–age or height–for–age Z score. ΔHAZ=change in HAZ (ie, HAZ at follow–up visit [50–90 days after enrolment] 
minus HAZ at enrolment). 

Table 3: Comparison of enrolment HAZ and ΔHAZ between patients with moderate–to–severe diarrhoea and their matched controls, by site
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during their visit and instead oral rehydration salts were 
prescribed at the sentinel hospital or health centre but 
left to the child’s caretakers to procure and administer at 
home. Without substantial investment of resources to 
support intense promotion of oral rehydration salt use at 

the community level, it is unlikely that the full public 
health impact of oral rehydration salts will be realised.19 
Moreover, it is uncertain whether oral rehydration salts 
and zinc alone will be sufficient to prevent growth 
faltering and reduce diarrhoea-related fatalities that we 

0–11 months 12–23 months 24–59 months

Weighted mean (95% CI) p value Weighted mean (95% CI) p value Weighted mean (95% CI) p value

Basse, The Gambia

Number of participants 199 LSD patients; 103 MSD 
patients

·· 183 LSD patients; 131 MSD 
patients

·· 120 LSD patients; 
62 MSD patients

··

Enrolment HAZ

LSD patients –0·56 (–0·74 to –0·38) 0·020 –1·21 (–1·39 to –1·03) 0·020 –1·43 (–1·63 to –1·23) 0·023

MSD patients –0·90 (–1·12 to –0·68) ·· –1·53 (–1·73 to –1·33) ·· –1·82 (–2·08 to –1·55) ··

ΔHAZ

LSD patients –0·27 (–0·35 to –0·20) 0·038 –0·23 (–0·28 to –0·17) 0·013 –0·10 (–0·15 to –0·05) 0·22

MSD patients –0·37 (–0·47 to –0·26) ·· –0·30 (–0·37 to –0·24) ·· –0·03 (–0·10 to 0·05) ··

Bamako, Mali

Number of participants 204 LSD patients; 206 MSD 
patients

·· 201 LSD patients; 
206 MSD patients

·· 208 LSD patients; 
191 MSD patients

··

Enrolment HAZ

LSD patients –0·57 (–0·72 to –0·41) 0·52 –0·88 (–1·04 to –0·72) 0·015 –1·07 (–1·22 to –0·93) 0·38

MSD patients –0·50 (–0·64 to –0·36) ·· –1·15 (–1·29 to –1·00) ·· –1·18 (–1·35 to –1·00) ··

ΔHAZ

LSD patients –0·37 (–0·44 to –0·31) 0·85 –0·08 (–0·11 to –0·04) 0·16 0·06 (0·03 to 0·09) 0·80

MSD patients –0·40 (–0·45 to –0·34) ·· –0·09 (–0·13 to –0·05) ·· 0·06 (0·03 to 0·09) ··

Manhiça, Mozambique

Number of participants 136 LSD patients; 55 MSD 
patients

·· 148 LSD patients; 37 MSD 
patients

·· 81 LSD patients; 22 MSD 
patients

··

Enrolment HAZ

LSD patients –0·83 (–1·04 to –0·63) 0·010 –1·30 (–1·51 to –1·10) 0·19 –1·52 (–1·80 to –1·24) 0·12

MSD patients –1·39 (–1·77 to –1·01) ·· –1·66 (–2·18 to –1·14) ·· –1·07 (–1·59 to –0·55) ··

ΔHAZ

LSD patients –0·03 (–0·15 to –0·08) 0·70 –0·04 (–0·11 to –0·04) 0·0020 –0·03 (–0·09 to 0·02) 0·033

MSD patients –0·01 (–0·16 to –0·15) ·· –0·27 (–0·39 to –0·14) ·· 0·10 (–0·04 to 0·23) ··

Kolkata, India

Number of participants 194 LSD patients; 189 MSD 
patients

·· 171 LSD patients; 147 MSD 
patients

·· 175 LSD patients; 
163 MSD patients

··

Enrolment HAZ

LSD patients –1·12 (–1·28 to –0·97) 0·94 –1·47 (–1·64 to –1·30) 0·18 –1·74 (–1·91 to 1·56) 0·21

MSD patients –1·12 (1·26 to –0·98) ·· –1·30 (–1·48 to –1·12) ·· –1·90 (–2·09 to –1·71) ··

ΔHAZ

LSD patients –0·10 (–0·15 to –0·06) 0·27 –0·07 (–0·09 to –0·04) 0·80 –0·03 (–0·04 to –0·02) 0·20

MSD patients –0·07 (–0·11 to –0·02) ·· –0·06 (–0·09 to –0·04) ·· –0·01 (–0·02 to 0·01) ··

Mirzapur, Bangladesh

Number of participants 176 LSD patients; 121 MSD 
patients

·· 146 LSD patients; 
102 MSD patients

·· 82 LSD patients; 93 MSD 
patients

··

Enrolment HAZ

LSD patients –1·06 (–1·26 to –0·85) 0·94 –1·05 (–1·23 to –0·88) 0·10 –0·98 (–1·20 to –0·76) 0·045

MSD patients –1·05 (–1·24 to –0·85) ·· –1·30 (–1·53 to –1·06) ·· –1·29 (–1·51 to –1·07) ··

ΔHAZ

LSD patients –0·21 (–0·29 to –0·14) 0·95 –0·16 (–0·22 to –0·10) 0·48 –0·09 (–0·13 to –0·05) 0·69

MSD patients –0·20 (–0·30 to –0·10) ·· –0·11 (–0·16 to –0·06) ·· –0·09 (–0·13 to –0·05) ··

(Table 4 continues on next page)
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have found to be associated with several important 
causes of MSD and LSD in low-resource settings, such 
as Cryptosporidium spp, enterotoxigenic E coli producing 
heat-stable toxin, and Shigella spp,2 which induce 
intestinal pathology in addition to fluid loss. The 
development and evaluation of strategies for prevention 
and treatment of these three pathogens for use in low-
resource settings and the impact of these interventions 
on the acute and longer-term consequences of diarrhoea 
should be research priorities.

Our case-control study identified an association 
between H pylori and diarrhoeal disease (both MSD and 
LSD) at multiple sites, affecting all age groups, and at all 
three Asian sites and at the Mali site. Our findings are 
supported by a longitudinal study of Peruvian children 
aged 6 months to 12 years that observed an increased 
incidence of diarrhoea during the first 2 months after 
acquisition of acute H pylori infection.20 Although both 
studies raise the prospect that H pylori is a diarrhoeal 
pathogen, one cannot exclude the possibility that it is a 
modifier that increases susceptibility to certain other 
enteropathogens, or a co-traveller that shares risk factors 
with other enteric infections, such as contaminated 
drinking water, household crowding, and inadequate 
hygiene.21 Studies that support the modifier theory, 
perhaps mediated by the propensity of persistent 
H pylori infection to cause hypochlorhydria, have found 
that children and adults with H pylori infection had an 
increased risk of typhoid fever in India22 and an increased 

severity (but not risk) of cholera in Bangladesh.23 
Evidence shedding doubt on the diarrhoeagenicity of 
H pylori includes findings that seronegative US adults 
who were challenged with H pylori did not report 
diarrhoeal symptoms.24–26 Additionally, three prospective 
studies among children younger than 5 years in de-
veloping countries did not find an overall increase in the 
incidence of diarrhoea in those with H pylori infection; 
however, methodological issues such as enrolment of 
children with pre-existing infection confound the 
interpretation of these findings.27–29

In many respects, the findings of GEMS-1A (and its 
parent study GEMS2) are complemented by the 
Malnutrition and Enteric Disease (MAL-ED) study,30 a 
contemporaneous multicentre, longitudinal, community-
based cohort study of enteric infections among infants 
aged 0–23 months in eight low-income and middle-
income countries. Both studies measured the proportion 
of diarrhoeal disease that was attributable to a broad 
array of pathogens, adjusting for asymptomatic detection 
of pathogens in controls, and both evaluated the impact 
of illness on growth and mortality. By design, children 
enrolled in GEMS and GEMS-1A were more severely 
ill, inhabited more impoverished environments, and 
spanned a broader age range, as detailed in a comparison 
published elsewhere.31 A minority (25·0%) of MAL-ED 
cases met the definition of LSD (ie, sought care at a 
health centre but were not considered MSD) and only 
10·2% met criteria for MSD.32 Accordingly, compared 

0–11 months 12–23 months 24–59 months

Weighted mean (95% CI) p value Weighted mean (95% CI) p value Weighted mean (95% CI) p value

(Continued from previous page)

Karachi (Bin Qasim Town), Pakistan

Number of participants 161 LSD patients; 108 MSD 
patients

·· 133 LSD patients; 89 MSD 
patients

·· 89 LSD patients; 62 MSD 
patients

··

Enrolment HAZ

LSD patients –1·31 (–1·50 to –1·12) 0·021 –2·04 (–2·27 to –1·81) 0·82 –2·34 (–2·67 to –2·02) 0·38

MSD patients –1·68 (–1·92 to –1·43) ·· –2·08 (–2·33 to –1·83) ·· –2·55 (–2·89 to –2·22) ··

ΔHAZ

LSD patients –0·09 (–0·19 to 0·01) 0·25 –0·28 (–0·36 to –0·20) 0·16 –0·04 (–0·11 to 0·02) 0·090

MSD patients –0·17 (–0·29 to –0·05) ·· –0·20 (–0·31 to –0·10) ·· –0·09 (–0·17 to –0·02) ··

All sites combined

Number of participants 1070 LSD patients; 782 MSD 
patients

·· 982 LSD patients; 
712 MSD patients

·· 755 LSD patients; 
593 MSD patients

··

Enrolment HAZ

LSD patients –0·98 (–1·07 to –0·88) 0·17 –1·47 (–1·58 to –1·37) 0·78 –1·79 (–1·94 to –1·64) 0·30

MSD patients –1·07 (–1·16 to –0·98) ·· –1·50 (–1·59 to –1·40) ·· –1·69 (–1·81 to –1·57) ··

ΔHAZ

LSD patients –0·16 (–0·21 to –0·12) 0·018 –0·18 (–0·21 to –0·15) 0·77 –0·04 (–0·07 to –0·009) 0·19

MSD patients –0·23 (–0·27 to –0·19) ·· –0·17 (–0·21 to –0·14) ·· –0·02 (–0·04 to 0·003) ··

Enrolment HAZ in patients with LSD versus patients with MSD was compared by weighted linear regression. ΔHAZ was compared by weighted linear regression, adjusting for 
enrolment HAZ and duration to follow–up. HAZ=length–for–age or height–for–age Z score. ΔHAZ=change in HAZ (ie, HAZ at follow–up visit [50–90 days after enrolment] 
minus HAZ at enrolment). LSD=less severe diarrhoea. MSD=moderate–to–severe diarrhoea. 

Table 4: Comparison of enrolment HAZ and ΔHAZ between patients with LSD and patients with MSD, by site.
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with mortality among children in MAL-ED (0·05%)32 
mortality in GEMS-1A was ten times higher among 
children with LSD and 20 times higher among children 
with MSD (unpublished). Moreover, the small reductions 
in HAZ (<-0·025) at 3 months associated with diarrhoea 
in MAL-ED33 were substantially lower than those seen 
among similarly aged children after LSD and MSD in 
GEMS-1A. These data illustrate the greater morbidity 
and mortality associated with the medically attended, 
more clinically severe diarrhoeal diseases included in 
GEMS-1A than with the milder episodes identified in the 
community during MAL-ED, and could help to explain 
the absence of association between diarrhoeal disease 
and growth faltering observed in MAL-ED.33 The relative 
contribution of various pathogens to the attributable 
disease burden could also contribute to the degree of 
growth faltering observed. Keeping in mind that cross-
study comparisons must be interpreted with caution, it 
appears that a broader spectrum of pathogens (assessed 
with conventional assays because quantitative PCR was 
not used in GEMS-1A) is associated with the less severe 
diarrhoeal episodes in GEMS-1A and MAL-ED,30 whereas 
fewer, and perhaps more pathogenic organisms (eg, 
rotavirus, Cyptosporidium spp, and Shigella spp), were 
associated with a greater proportion of the more severe 
MSD episodes.

Several limitations must be considered when inter-
preting the results of this study. For one, enrolment was 
undertaken for only one calendar year, thus limiting 
statistical power for comparisons. The method for 
calculating incidence by using the proportion of children 
with MSD or LSD taken to one of the site’s sentinel 
hospitals or health centres to derive overall and pathogen-
specific population-based incidence values assumes that 
pathogen distribution is similar in participants who seek 
and do not seek care at a sentinel hospital or health 
centre. This is a limitation particularly when applied to 
LSD. In the absence of unique clinical parameters to 
define LSD, incident cases included all episodes of 
diarrhoea occurring in the community that were not 
MSD, which encompass a range of severity. If LSD 
episodes seen at the sentinel hospital or health centre 
were more severe than those of children not seeking 
care at the sentinel hospital or health centre, then the 
pathogen-specific incidence values that were calculated 
on the basis of the pathogens identified among LSD 
cases at the sentinel hospital or health centre might be 
over-represented. It is thus reassuring that the proportion 
of children with LSD in the community who met WHO 
criteria for dehydration was similar to that seen among 
patients with LSD who sought care at the sentinel hospital 
or health centre. Moreover, our estimates of the overall 
incidence of acute, new-onset diarrhoeal disease (ie, MSD 
plus LSD) were considerably lower than reported 
elsewhere, so our measurements might actually represent 
underestimates.34 Finally, parents participating in the 
health-care utilisation and attitudes surveys probably 

under-reported milder diarrhoeal episodes occurring 
during the previous 7 days.7,35

In summary, our results show that the same 
four pathogens—ie, rotavirus, Cryptosporidum spp, 
Shigella spp, and enterotoxigenic E coli producing heat-
stable toxin—are responsible for most episodes of MSD 
and LSD. Our findings markedly expand the numbers 
of children adversely affected nutritionally by the 
consequences of diarrhoeal diseases but do not alter 
the focus of preventive efforts. The development and 
evaluation of strategies for prevention and treatment of 
Cryptosporidium spp, Shigella spp, and enterotoxigenic 
E coli producing heat-stable toxin for use in low-resource 
settings and the impact of these interventions on the 
acute and long-term consequences of diarrhoea should 
be priorities for future investigations.
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