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RESEARCH Open Access

Development and internal validation of the
multivariable CIPHER (Collaborative
Integrated Pregnancy High-dependency
Estimate of Risk) clinical risk prediction
model
Beth A. Payne1,2,3* , Helen Ryan1,3,4, Jeffrey Bone1,3, Laura A. Magee1,3,5,6, Alice B. Aarvold5, J. Mark Ansermino2,3,
Zulfiqar A. Bhutta7,8, Mary Bowen9, J. Guilherme Cecatti10, Cynthia Chazotte11,12, Tim Crozier13,
Anne-Cornélie J. M. de Pont14, Oktay Demirkiran15, Tao Duan16, Marlot Kallen14, Wessel Ganzevoort14, Michael Geary9,
Dena Goffman11,12, Jennifer A. Hutcheon1,3, K. S. Joseph1,3, Stephen E. Lapinsky17, Isam Lataifeh18, Jing Li1,3,
Sarka Liskonova1,3, Emily M. Hamel1, Fionnuala M. McAuliffe19, Colm O’Herlihy19, Ben W. J. Mol14,20,
P. Gareth R. Seaward17, Ramzy Tadros18, Turkan Togal15, Rahat Qureshi7, U. Vivian Ukah1,3, Daniela Vasquez21,
Euan Wallace13, Paul Yong1,3, Vivian Zhou15, Keith R. Walley5,22, Peter von Dadelszen1,3,6 and the CIPHER Group

Abstract

Background: Intensive care unit (ICU) outcome prediction models, such as Acute Physiology And Chronic Health
Evaluation (APACHE), were designed in general critical care populations and their use in obstetric populations is
contentious. The aim of the CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) study
was to develop and internally validate a multivariable prognostic model calibrated specifically for pregnant or
recently delivered women admitted for critical care.

Methods: A retrospective observational cohort was created for this study from 13 tertiary facilities across five high-
income and six low- or middle-income countries. Women admitted to an ICU for more than 24 h during pregnancy
or less than 6 weeks post-partum from 2000 to 2012 were included in the cohort. A composite primary outcome
was defined as maternal death or need for organ support for more than 7 days or acute life-saving intervention.
Model development involved selection of candidate predictor variables based on prior evidence of effect,
availability across study sites, and use of LASSO (Least Absolute Shrinkage and Selection Operator) model building
after multiple imputation using chained equations to address missing data for variable selection. The final model
was estimated using multivariable logistic regression. Internal validation was completed using bootstrapping to
correct for optimism in model performance measures of discrimination and calibration.
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Results: Overall, 127 out of 769 (16.5%) women experienced an adverse outcome. Predictors included in the final
CIPHER model were maternal age, surgery in the preceding 24 h, systolic blood pressure, Glasgow Coma Scale
score, serum sodium, serum potassium, activated partial thromboplastin time, arterial blood gas (ABG) pH, serum
creatinine, and serum bilirubin. After internal validation, the model maintained excellent discrimination (area under
the curve of the receiver operating characteristic (AUROC) 0.82, 95% confidence interval (CI) 0.81 to 0.84) and good
calibration (slope of 0.92, 95% CI 0.91 to 0.92 and intercept of −0.11, 95% CI −0.13 to −0.08).

Conclusions: The CIPHER model has the potential to be a pragmatic risk prediction tool. CIPHER can identify
critically ill pregnant women at highest risk for adverse outcomes, inform counseling of patients about risk, and
facilitate bench-marking of outcomes between centers by adjusting for baseline risk.

Keywords: Risk prediction model, High-risk pregnancy, Maternal mortality, Maternal morbidity, Critical care

Background
Most women who die during or soon after pregnancy in
a health facility do so in an intensive care unit (ICU), if
one is available [1–3]. Maternal ICU admissions result
from both obstetric and non-obstetric complications in
pregnancy; about two thirds of admissions are due to
obstetric causes, such as hemorrhage, pre-eclampsia,
and sepsis, and one third are due to maternal medical or
surgical complications [1–3].
ICU clinical prediction models—including Acute Physi-

ology And Chronic Health Evaluation II (APACHE II),
APACHE III, Multiple Organ Dysfunction Score (MODS),
Simplified Acute Physiology Score 3 (SAPS 3), and
Sepsis-related Organ Failure Assessment (SOFA)—were
developed in general ICU populations to assess the likeli-
hood of an adverse health outcome (such as death or se-
vere morbidity) and guide counseling and clinical decision
making [4–8]. However, most ICU outcome prediction
models were designed in general critical care populations
in high-income countries (HICs) and their use in obstetric
populations and in low- and middle-income countries
(LMICs) is contentious. These general ICU prediction
rules tend to overestimate the risk of maternal death by
up to 20-fold [1]. The two exceptions to this are the SOFA
score for sepsis risk and the Maternal Severity Index rule
[9, 10]. None of the obstetric-focused ICU risk models has
been developed to predict maternal death or prolonged
organ support, an outcome reflective of severe maternal
morbidity and of greater relevance in maternity popula-
tions among whom death is unusual, even in the ICU.
Maternal Early Warning scores are being adopted in

obstetric care in many settings across the globe. These
scores have resulted in mixed results when validated
[11] and are relevant only for care prior to ICU admis-
sion. Given the unique physiology during pregnancy and
post-partum, new pregnancy-specific clinical prediction
rules, specific to the ICU setting, are required [12, 13].
Our objective was to develop and internally validate the
globally relevant CIPHER (Collaborative Integrated
Pregnancy High-dependency Estimate of Risk) model to

predict either death or severe morbidity for pregnant
and post-partum women admitted for critical care.

Methods
Study setting
Thirteen collaborating sites with ICUs from 11 countries
contributed data to the CIPHER cohort. These sites were
identified through a literature review of published ob-
stetric ICU cohorts. After initial contact to establish
whether the investigators were interested in collaborat-
ing, they were sent a survey to ensure suitability of the
facility for participation in the CIPHER cohort. This sur-
vey evaluated human resources, interventions, and infra-
structure available at each ICU site to ensure that sites
were similar with regard to type of care provided. The
HICs were in Canada, the US, Ireland, the Netherlands,
and Australia. The LMIC sites were in Brazil, Argentina,
Jordan, Turkey, Pakistan, and China. (For details, please
see Additional file 1: Table S1.)

Inclusion and exclusion criteria
Women were included if they were admitted to a critical
care unit for more than 24 h and were known to be ei-
ther pregnant (diagnosed before or during their ICU
stay) or no more than 42 days post-partum, irrespective
of pregnancy duration, from 1 January 2000 to 31 De-
cember 2012. Women admitted for less than 24 h who
were neither pregnant nor recently pregnant were ex-
cluded, as were women with 10 or more missing candi-
date predictor variables or those who were missing
primary outcome information or who met the definition
of the primary outcome prior to admission.

Data collection
We carried out a retrospective chart review of both paper
and electronic medical records by using standardized data
collection forms and protocols for all sites. Data were en-
tered into a customized, secure online RedCAP® database.
All data were reviewed for quality and consistency. When
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questions arose regarding data reliability, these data were
confirmed by re-review of the primary health record.

Primary outcome
The composite primary outcome was defined as any one
of (i) maternal death during pregnancy or within 42 days
of delivery or (ii) organ support for more than 7 days or
(iii) life-saving intervention or a combination of these.
Organ support and life-saving interventions included in
this composite were defined by organ system and are
used as a surrogate for severe maternal morbidity. Spe-
cifically, organ support outcomes include any one or
more of (1) respiratory (continuous positive airway pres-
sure (CPAP), bilevel positive airway pressure (BiPAP), or
invasive ventilation); (2) cardiac (positive inotrope or
vasopressor use); (3) continuous renal replacement ther-
apy for acute renal failure; (4) hepatic (liver transplant-
ation and other management of hepatic failure (for
example, ventilatory and circulatory support), manage-
ment of elevated intracranial pressure and renal failure,
and medical therapies for hepatitis B virus (for example,
lamivudine)), and anticoagulation for Budd–Chiari syn-
drome); (5) hematologic (transfusion of at least 5 units
of blood products); (6) neurological (Glasgow Coma
Scale score of less than 10); or (7) uterine (uncontrol-
lable hemorrhage or infection leading to hysterectomy).
These definitions were arrived at through study working
group consensus and are based on definitions of organ
support used in the APACHE studies [5] and the World
Health Organization (WHO) near-miss approach [10].

Sample size
This sample size estimate is based on a rule of thumb
for developing risk prediction models with unbiased esti-
mates of regression coefficients [14]. The formula—[N
= (n × 10) / I]—was used to calculate the sample size
where N = the required sample size, n = the number of
variables to be tested, and I = the incidence of the com-
bined adverse outcome [14]. We assumed, on the basis
of published reports, I = 12% for either maternal mortal-
ity or prolonged organ support for obstetric women ad-
mitted for critical care [15]. We estimated that to
develop a reliable model with minimal overfitting with n
= 10 candidate predictor variables at an assumed event
rate of 12%, a cohort of N = 833 women was required.

Model development
Dealing with missing data
Multiple imputation using chained eqs [16, 17] was
undertaken to estimate missing data over 10 iterations
to generate 10 complete datasets for model develop-
ment. Two analysts replicated this process. We assumed
that data were missing at random [17]. Women with and
without missing data were compared to identify all

clinical, laboratory, and demographic variables that dif-
fered between the groups. These variables were included
in the imputation models along with all selected candi-
date predictor variables and the primary outcome [18].

Selection of candidate predictor variables
Initially, we performed a structured literature review of
existing critical care outcome prediction models and their
evidence for use in pregnancy to identify candidate pre-
dictor variables [1]. This review has been published else-
where [1]. Variables considered for the CIPHER model
included patient demographic details, prior health status,
indication for ICU admission, and clinical and laboratory
measurements taken in the first 24 h following ICU ad-
mission. The literature review identified 43 possible vari-
ables to include in the modelling process. This list was
refined and reduced to 19 after exclusion of variables that
were not routinely available at all sites (defined as having
more than 30% missing values in the dataset) and through
iterative dialogue with the participating critical care,
maternal-fetal-medicine, and epidemiology experts in the
CIPHER team to identify concerns about generalizability
of measurements and clinical policy relevant to each vari-
able across study settings.
As a final step, Pearson’s correlation coefficient (for

continuous predictors) or chi-squared test (for categor-
ical variables) was used to estimate any correlation be-
tween candidate predictors within each imputed dataset.
Consultation within the study working group was used
when collinearity was suspected to select which variable
to retain on the basis of perceived clinical value, reliabil-
ity of measurement, and availability. The 14 most clinic-
ally relevant, available, and non-correlated variables were
then included in the final variable selection step (Fig. 1).
The LASSO (Least Absolute Shrinkage and Selection

Operator) method was used to reduce the number of
candidate predictors further and select final variables to
include in the CIPHER model [19]. The LASSO selects
variables by penalizing models that have more and larger
coefficients. This requires a choice for the degree to
which to penalize these terms. For this analysis, the pen-
alty term in each imputed dataset was chosen by 10-fold
cross-validation. This process resulted in a variety of
possible penalty “sizes”, and the one in each dataset
yielding the smallest area under the curve of the receiver
operating characteristic (AUROC) was chosen as the
penalty to use. Both squared and cubic transformations
were evaluated at this stage of variable selection for any
candidate predictor variable that was assumed to have a
non-linear relationship with the outcome due to known
increases in clinical risk at both high and low levels.
These variables were identified prior to LASSO model
development as maternal age, blood pressure, serum so-
dium, and white blood cell count.
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LASSO models were built using the glmnet package in
R [20]. This variable selection technique was repeated
within each imputed dataset, resulting in 10 models. A
priori, we set thresholds for inclusion in the final
CIPHER model as any variable which retained a
non-zero coefficient in the LASSO model in seven or
more imputations. Variables that maintained a non-zero
coefficient in fewer than seven of the LASSO models
would not be retained for final parameter estimation.

Estimating parameter effects
Multivariable logistic regression was used to estimate
variable effects of selected predictors in each of the 10
imputed datasets. A final pooled estimate of effect was
then generated using Rubin’s rules implemented in
STATA through the mi estimate command [21].

Assessing the model’s performance
The discrimination ability of the final model was evaluated
on the basis of AUROC [22]. Discrimination in this con-
text refers to the ability of the model to distinguish be-
tween women with and without outcomes. An AUROC of
more than 0.7 indicates good model discrimination.
Model calibration was assessed by plotting deciles of

the predicted probability of an adverse maternal out-
come against the observed rate in each decile and fitting
a smooth line using locally weighted scatterplot smooth-
ing (lowess) using the “rms” and “calibrationcurves”

packages in R [23, 24]. This smooth line is used to deter-
mine the calibration slope and intercept [25]. These cali-
bration measures are used to describe the accuracy of
the predicted probability compared with the observed
outcome and are considered measures of model
goodness-of-fit. Ideally, the slope would be close to one
and intercept zero. Discrimination and calibration mea-
sures were estimated for each of the imputed datasets
and then pooled using Rubin’s rules. Graphs presented
are drawn using the pooled linear predictor value for
each woman in the dataset.
A risk stratification table was used to evaluate model

classification accuracy and stratification capacity. Both
classification accuracy, defined as the ability of the model
to separate cases with an outcome into higher-risk groups
and cases without an outcome into lower-risk groups, and
stratification capacity, defined as the ability of the model
to separate the population into distinct risk groups, give
additional information on model calibration. A useful
model will separate the population into distinct risk
groups so that the majority of outcome cases result in a
high predicted probability and the remaining cases have a
visibly lower predicted probability, leaving few in the
middle.
Categories within the stratification table were defined

to be balanced around the population prevalence. By
balancing around the population prevalence, we defined
risk groups that have the potential to be meaningfully

Fig. 1 The process of selection of predictor variables for inclusion in the CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate
of Risk) model. Abbreviations: ABG arterial blood gas, ALT alanine aminotransferase, AST aspartate aminotransferase, BMI body mass index, FiO2
fraction of inspired oxygen, ICU intensive care unit, INR international normalized ratio, LASSO Least Absolute Shrinkage and Selection Operator,
LDH lactate dehydrogenase, MAP mean arterial pressure, SaO2 oxygen saturation.
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different than the prevalence itself, which represents the
total population risk. Specifically, the lowest and highest
groups were set at predictive probability about three
times greater and less than the prevalence. We calcu-
lated the sensitivity, specificity, positive predictive value,
negative predictive value, and likelihood ratios (LRs) for
each risk group. A positive test was defined using the
upper limit of the predicted probability range for each
risk group, except for calculation of the LRs, which
followed the method of Deeks and Altman [26]. These
measures of diagnostic accuracy are used in this study to
describe potential accuracy of the model if it were imple-
mented as a decision rule using the defined risk groups.
The following categories for interpretation of the LRs
were used: strongly informative (LR <0.1 or >10), moder-
ately informative (LR 0.1–0.2 or 5–10), and
non-informative (LR 0.2–5). Uniformity of the model fit
was tested by assessing model performance in various
subsets of study data, including HIC versus LMIC, ante-
natal versus post-partum admission, and in cases with
obstetric versus other indication for admission.

Model internal validation and optimism correction
Internal validation of the model was assessed in each
of the 10 imputed datasets using Efron’s enhanced
bootstrap method [27]. Details of this approach have
been described previously [28, 29]. Model optimism
was calculated for discrimination (AUROC) as the
average difference between model performance in the
bootstrap sample and the original imputed dataset
after 200 iterations of the bootstrap procedure. This
resulted in 10 estimates of average optimism, which
were pooled using Rubin’s rules to generate a final
optimism result.
In addition, internal validation of the calibration slope

and intercept was completed during the bootstrapping
procedure using the same method as above. For these
measures of model fit, we calculated the average slope
and intercept for each bootstrap model applied to its
original imputed dataset over 200 iterations. This re-
sulted in 10 average slopes and intercepts that were then
pooled using Rubin’s rules to generate final internally
validated measures of model calibration.
All analyses were initially performed in R using the

“mice”, “rms”, “calibrationcurves”, and “glmnet” pack-
ages. Pooling of parameter estimates and model per-
formance estimates were repeated by a second analyst to
confirm results using STATA version 13.0.

Results
At the 13 study sites, retrospective chart review was
completed for 876 eligible women who met inclusion
criteria. We excluded 107 women; 93 of these were ex-
cluded because they were missing at least 10 out of 19

candidate predictor variables included in the imputation
step and 14 because they were missing outcome data. A
final cohort of 769 women was identified for analysis.
Characteristics of the study population are presented in

Table 1, comparing women with and without the primary
adverse outcome of death or morbidity, as previously de-
fined. Women with the primary adverse outcome were
younger and more often accessed care through private fa-
cilities, were admitted for non-obstetric reasons, were ad-
mitted to the ICU earlier in gestation and for longer, and
had a greater number of early pregnancy losses and still-
births. The primary outcome was observed in 127 (16.5%)
women. Of these, 59 (7.7%) were maternal deaths and 68
(8.8%) required one or more component of organ support
alone. The most common organ support outcome was the
need for respiratory support (Table 2).

Imputation
A comparison of women with and without missing data
shows that women with missing data were less severely
ill and had shorter duration of ICU stay (Additional
file 1: Table S3). Imputation models specified for this
study included all variables that differed between women
with or without one or more missing selected predictor
variable to best account for these differences. Univariate
odds ratios estimated for all candidate predictor vari-
ables in both the imputed data (Table 3) and complete
case cohorts (Additional file 1: Table S2) were similar,
and an expected increase in precision was seen in the es-
timates generated using the imputed data.

Model development
The final variables selected for inclusion in the CIPHER
model were maternal age, surgical status in the preceding
24 h, systolic blood pressure, Glasgow Coma Scale score,
serum sodium, serum potassium, activated partial
thromboplastin time (aPTT), serum creatinine, and serum
bilirubin, and arterial blood gas (ABG) pH (Table 4). The
odds of experiencing an adverse outcome increase as
serum creatinine, total bilirubin, serum sodium, and aPTT
increase; decrease as maternal age and systolic blood pres-
sure decrease; and decrease if ABG pH and Glasgow
Coma Scale score increase or if there was surgery in the
24 h preceding ICU admission (Table 3).

Model performance
The apparent AUROC for the CIPHER model was 0.84
(0.83 to 0.85) (Fig. 2). This model was well calibrated in
the development data, as would be expected, with a cali-
bration slope of 1.0 and intercept of −0.001 (Fig. 3).
Stratification capacity and classification accuracy of the
model as presented in Table 5 were both good; the ma-
jority of women identified in the two lowest risk groups
(54.1% women, n = 416) had low rates of adverse

Payne et al. Critical Care          (2018) 22:278 Page 5 of 13



outcome (3.8%, n = 16). Women in the highest-risk
group had a high incidence of adverse maternal outcome
(66.1%, n = 59). This is meaningfully greater than the

population prevalence of adverse outcome (16.5%), as is
reflected by the high LR associated with this category
(27.97, 95% confidence interval (CI) 16.91 to 46.27).

Table 1 Characteristics of the study population

Patient characteristics Women with no outcome
(n = 642), median (IQR) or n (%)

Women with outcome
(n = 127), median (IQR) or n (%)

Age, years 31 (26–36) 27 (25–32)

Marital status

Married 346 (53.9) 90 (70.9)

Single 62 (9.7) 1 (0.8)

Missing 234 (36.4) 36 (28.3)

BMI, kg/m2 26.4 (24.0–30.0) 26.2 (23.2–29.1)

Prenatal care type

Public 383 (59.7) 54 (42.5)

Private 208 (32.4) 73 (57.5)

Missing 51 (7.9) 0 (0.0)

Gravidity 3 (2–4) 4 (2–5)

Parity 1 (1–2) 2 (1–3)

Details of ICU admission

Reason for admission‡

Obstetric* 465 (72.4) 77 (60.6)

Non-obstetric** 263 (41.0) 95 (74.8)

Missing 3 (0.4) 0 (0.0%)

Timing of admission

Antepartum 162 (25.2) 46 (36.2)

Intrapartum 6 (0.9) 1 (0.8)

Post-partum 459 (71.5) 77 (60.6)

Missing 15 (2.3) 3 (2.4)

Gestational age in weeks at ICU admission (for women admitted antepartum) 34.4 (28.7–38.0) 30.9 (22.4–35.8)

External ICU transfer, yes 184 (28.7) 21 (16.5)

Length of ICU stay, hours 59.4 (37.0–92.1) 209.9 (110.7–309.4)

Pregnancy outcomes

Early pregnancy loss <24 weeks

Yes 59 (9.2) 27 (21.3)

Missing 29 (4.5) 13 (10.2)

Stillbirth 33 (5.1) 24 (18.9)

Livebirth 459 (71.5) 55 (43.3)

Mode of birth

Vaginal 96 (19.8) 25 (30.5)

Caesarean 387 (79.8) 57 (69.5)

Missing 2 (0.4) 0 (0.0)

Birth weight, g 2555 (1700–3250) 2100 (1415–2700)

Abbreviations: BMI body mass index, ICU intensive care unit, IQR interquartile range
*Obstetric reasons for admission included shock, massive postpartum hemorrhage, peripartum cardiomyopathy, amniotic fluid embolism, acute respiratory distress
secondary to antepartum hemorrhage, pulmonary edema secondary to pre-eclampsia, eclampsia, septic abortion, other septic complications, and surgical trauma.
**Non-obstetric reasons for admission included cardiac arrhythmia, pericardial effusions, cardiogenic pulmonary edema, pulmonary hypertension, cardiac arrest,
pneumonia, respiratory failure or arrest, gastrointestinal perforation/obstruction, diabetic keto-acidosis, deep venous thrombosis, thrombotic thrombocytopenic
purpura, posterior reversible encephalopathy syndrome, and severe infection with sepsis
‡ reasons are not mutually exclusive
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Internal validation
After 200 iterations of bootstrapping in each of the
10 imputed datasets, the pooled average optimism for
the AUROC was 0.013, which results in an
optimism-corrected AUROC for the CIPHER model
of 0.82 (95% CI 0.81 to 0.84). Minimal overestimation
of risk was identified after bootstrap analysis with a
resultant optimism-corrected calibration slope of 0.92
(95% CI 0.91 to 0.92) and intercept of −0.11 (95% CI
−0.13 to −0.08).

Subgroup analysis
All subgroup analyses demonstrated uniformity of
model fit with maintenance of discriminative

performance of the CIPHER model above our defined
threshold for adequate performance of AUROC of
more than 0.7. When the cohort was restricted to
only those cases admitted to the ICU during the
antenatal/intrapartum period, versus the post-partum
period, the AUROCs were estimated as 0.84 (95% CI
0.78 to 0.91) and 0.83 (95% CI 0.79 to 0.89), respect-
ively. When the cohort was restricted to only those
cases admitted for obstetric causes versus those with
non-obstetric causes, the AUROCs were 0.85 (95% CI
0.80 to 0.90) and 0.82 (95% CI 0.76 to 0.88), respect-
ively. When the cohort was restricted to either LMIC
facilities or HIC facilities, the AUROCs were esti-
mated to be 0.851 (95% CI 0.812 to 0.894) versus

Table 3 Univariate and multivariable odds ratios for selected candidate predictor variables pooled from 10 imputed datasets

Patient characteristics multivariate analysis Univariate OR (95% CI) Multivariate OR (95% CI)

Maternal age, years 0.95 (0.92–0.98) 0.95 (0.92–0.99)

Surgery in preceding 24 h, yes 0.47 (0.32–0.70) 0.46 (0.29–0.73)

Highest systolic blood pressure, mm Hg 0.99 (0.98–1.02) 0.99 (0.98–1.00)

Lowest Glasgow Coma Scale score 0.85 (0.82–0.89) 0.87 (0.83–0.91)

Lowest ABG pH 0.60 (0.28–1.29) 0.57 (0.22–1.44)

Highest aPTT 1.02 (1.02–1.03) 1.02 (1.01–1.03)

Highest serum potassium 0.90 (0.72–1.12) 0.73 (0.56–0.94)

Highest serum sodium 1.07 (1.04–1.10) 1.03 (1.00–1.08)

Highest creatinine, per 10 unit change 1.05 (1.03–1.07) 1.04 (1.03–1.07)

Highest bilirubin, per 10 unit change 1.10 (1.07–1.14) 1.05 (1.01–1.09)

Abbreviations: ABG arterial blood gas, aPTT activated partial thromboplastin time, CI confidence interval, OR odds ratio

Table 2 Incidence and definition of each of the components of the primary outcome

Definition Total (n = 769),
n (%)

Total women with primary outcome 127 (16.5%)

Maternal death Death during or within 42 days of delivery 59 (7.7%)

Maternal Morbidity Occurrence of one or more of the defined organ support measures below 97 (12.6%)

Organ support

Respiratory Need for CPAP, BiPAP, or invasive ventilation 73

Cardiovascular Need for use of inotropes or vasopressors 15

Renal Renal replacement therapy for acute renal failure 14

Hepatic Liver transplantation. Other management of hepatic failure include
ventilatory and circulatory support, management of elevated
intracranial pressure and renal failure, medical therapies for
hepatitis B virus (lamivudine); anticoagulation for Budd–Chiari syndrome.

21

Hematological Massive transfusion of at least 5 units of blood products 60

Neurological GCS score of less than 10 35

Uterine Uncontrollable hemorrhage or infection leading to life-saving hysterectomy 16

Abbreviations: BiPAP bilevel positive airway pressure, CPAP continuous positive airway pressure, GCS Glasgow Coma Scale
Maternal morbidities presented are not mutually exclusive and include those occurring in women who died. Morbidities have been grouped by organ system. All
organ system outcomes required use of life-saving treatment for more than 7 days to meet outcome criteria with the exception of hematological and
uterine support.
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0.774 (95% CI 0.663 to 0.868), respectively. There was
a small but meaningful decrease in the point estimate
of AUROC when the analysis was restricted to only
HIC cases and the lower limit of the confidence
interval falls below the 0.7 threshold for a good
model.
When the CIPHER model was used to predict mater-

nal death alone, the AUROC was 0.87 (95% CI 0.86 to
0.88). The discriminative performance of the APACHE 2
score for death during pregnancy or less than 6 weeks
post-partum in our ICU cohort was also high (AUROC
0.84, 95% CI 0.72 to 0.96). This analysis included only
433 women who had complete data on all 17 APACHE
2 predictor variables.

Discussion
Main findings
We have developed and internally validated the CI-
PHER clinical risk prediction model to accurately as-
sess risk of either death or the need for life-saving
prolonged organ support for pregnant or recently
pregnant women admitted to an ICU at 13 inter-
national sites. The final CIPHER model includes pre-
dictor variables that are readily available globally and
at relatively low cost. It is a simple model, including
only 10 predictors. After internal validation, CIPHER
affords high discrimination (0.82, 95% CI 0.81 to
0.84) and good calibration (slope of 0.92, 95% CI 0.91
to 0.92 and intercept of −0.11, 95% CI −0.13 to
−0.08). External validation of the model is now re-
quired prior to implementation of the model in clin-
ical practice.

Strengths and limitations
We have built on the previously successful work of this
collaborative team and developed the model on the basis
of clinical knowledge and a priori information about
relevant and globally available predictor variables. For
this study, we chose to use a composite outcome that re-
flects the important health burden of severe maternal
morbidities and goes beyond the traditional focus of

Table 4 Final CIPHER (Collaborative Integrated Pregnancy High-
dependency Estimate of Risk) model

Logit(p) = 3.087 + [−1.912 × 10−5 (maternal age)3] + [−0.776(positive
surgical status within 24 h of admission)] + [−0.138 (Glasgow Coma
Scale score)] + [−7.123 × 10−3 (systolic blood pressure)] + [−0.319 (serum
potassium)] + [1.373 × 10−4 (serum sodium)2] + [4.934 × 10−3 (serum
bilirubin)] + [4.673 × 10−3 (serum creatinine)] + [1.584 × 10−2 (activated
partial thromboplastin time)] + [−0.570 (arterial blood gas pH)]
Maternal age (years); surgical status (yes/no); Glasgow Coma Scale score
(ordinal units); systolic blood pressure (millimeter of mercury); serum
bilirubin (micromole per liter); serum creatinine (micromole per liter)

Fig. 2 Area under the receiver operating characteristic curve for the CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of
Risk) model plotted using the pooled predicted probabilities of outcome for each woman in the 10 imputed datasets. The area under the curve
of the receiver operating characteristic for this model prior to adjustment for overfitting is 0.84 (0.83–0.85)
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ICU risk scores on death alone. We believe that this
greatly expands the clinical utility of the CIPHER model.
Maternal mortality is thankfully on the decline. As mor-
tality declines, severe maternal morbidity will become
even more relevant as an outcome to structure manage-
ment strategies around. This model can now be easily
recalibrated for individual settings as long as the 10 pre-
dictor variables are available.
The CIPHER model was developed specifically for

use in obstetric ICU populations with a globally di-
verse cohort involving collaboration across 11 coun-
tries. Although inclusion of a diverse geographic
sample leads to an increase in global relevance, it also
likely contributed to a reduction in overall model per-
formance at the local level. A reduction in overall
performance is evident when we compare perform-
ance seen in the high- and low- or middle-income
country subgroups. In both settings, performance is
maintained above the threshold for an adequate prog-
nostic model (AUROC >0.7) but CIPHER is better at
discriminating between women with and without out-
comes in the low- or middle-income population,
where the majority of outcomes occurred. A potential
weakness of the dataset used is the variability in out-
come rates between sites; 88.6% of outcomes occurred
in LMIC sites, 57.6% solely in the Pakistan site. For
this reason, we recommend external validation and, if

required, recalibration of the model in each setting
individually before application in clinical care.
Performance of the CIPHER model to predict mater-

nal death alone was similar to the APACHE II model in
our cohort. We chose to use both maternal death and
the need for life-saving organ support as a primary out-
come in order to make the CIPHER model more clinic-
ally useful for a pregnant population than a model such
as APACHE II, which predicts death alone. Severe ma-
ternal morbidity is as significant in its life-altering con-
sequences as mortality within this young and otherwise
healthy population of women.
Weaknesses of the study design included its retro-

spective nature, missing data due to incomplete data
entry, and unmeasured variables from some sites, pre-
cluding the potential for inclusion of those variables in
the final model. Over 100 cases were excluded because
of a high degree of missing data that we felt would have
undermined the benefit of the multiple imputation strat-
egy to correct for missing data in the remaining cases.
This resulted in a smaller dataset than had been targeted
on the basis of our sample size calculation. We did not
achieve our a priori estimated sample size, but use of
multiple imputation in the remaining cases and the
higher rate of adverse outcomes than had been expected
resulted in an adequate sample size for model develop-
ment. It is important to note that if we were to use the

Fig. 3 Calibration plot of CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) model developed using the pooled
predicted probabilities of outcome for each woman in the 10 imputed datasets. The smooth line represents fit of the model predicted risk of
outcome to the observed rate within each decile of predicted probability. The straight diagonal line is used as reference for perfect fit. The bar
chart at the base of the figure presents distribution of cases with outcomes (above the line) and without cases (below the line) across the
spectrum of predicted probability
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same sample size formula with our observed outcome
rate of 16.5%, a sample size of 606 would be considered
adequate to generate robust estimates of model coeffi-
cients. We far exceeded that with our sample size of 769
women in the cohort used for analysis.
Another limitation is that because clinicians were

not masked to the results of the variables assessed in
the modeling, CIPHER is vulnerable to treatment
paradox [30]; this may be particularly true for the
protective nature of post-surgical status that may
modify both admission and intervention thresholds
and surveillance intensity.

Interpretation
Identifying the variables that predict outcome in pregnant
or recently pregnant women admitted to the ICU and de-
veloping a prediction model enables estimation of the like-
lihood of an adverse maternal event in the future on the
basis of information available at the time of a woman’s ad-
mission to the ICU. The candidate predictor variables for
the CIPHER model were those that were routinely and re-
liably measured, were readily available in hospitals world-
wide, and had potential to inform or predict severity of
illness or outcome. The definition of severe maternal mor-
bidity was organ- and management-based, reflecting the
true burden of disease in the ICU: both the need for organ
support and the impact of prolonged duration of organ
support and care.
In the development cohort, a threshold CIPHER

score of at least 50% was deemed a “positive” test for
the combined outcome to define a high-risk group.
The LR of 27.97 (95% CI 16.91 to 46.27) for this
group is strongly informative. In this group, with an
at least 50% CIPHER risk, there is evidence for action
as it identifies those women who are most at risk of
a combined outcome. In areas where resources are
available to manage additional case load or where
greater concern exists around impact of missing
true-positive cases, setting the threshold for high risk
as greater than 25% predicted probability remains in-
formative with an LR of 9.18 (95% CI 6.16 to 13.69)
with only a small increase in associated false-positive
rate. This means that useful clinical information can
be gained from the CIPHER model in order to guide
care in a variety of contexts.
Four published studies have focused on development of

a maternal ICU outcome prediction model [10, 31–33].
Developed solely in Brazil, the Maternal Severity Index
used predefined, rather than statistically driven, WHO se-
verity markers, identifying seven predictors of maternal
death, many of which were themselves composite predic-
tors [10]. A secondary analysis of a cohort of maternal
general ICU admissions from the UK that focused on
evaluation of APACHE II variables identified medical

history, heart rate, systolic blood pressure, and especially
Glasgow Coma Scale score as independently predictive of
maternal death [31]; however, they did not develop a mul-
tivariable prediction model. Nine independent variables
predictive of maternal death were identified in a West Af-
rican (non-ICU) hospital-based study [32]. Of these, many
were indications for ICU admission in our study and were
not included as candidate predictor variables, including
severe anemia, malaria diagnosed during pregnancy, ob-
stetric hemorrhage, pre-eclampsia or eclampsia, uterine
rupture, and genital infection or sepsis. Again, these vari-
ables were not formally combined to generate a compar-
able predictive model. A US military cohort was used to
develop a 13-variable risk assessment model to predict 38
maternal outcomes, including labor, delivery, maternal
morbidity, and death [33]. Performance of this model was
good with a reported AUROC of 0.75 for poor maternal
outcome, but the model is applicable only to the antenatal
period. None of these studies resulted in models overtly
applicable to critical care of obstetric patients in both
HICs and LMICs.
Future work in this area of research should focus on a

number of translational biomarkers poised to become
regular components of both maternity and critical care
and with potential to modify CIPHER [34, 35]. Prospect-
ive external and temporal validation studies of CIPHER
are required prior to its broad dissemination into com-
munities of care, whether in LMICs or HICs. To support
work towards external validation we have provided a CI-
PHER calculator (see Additional file 2). An additional
goal for validation could be to expand the scope of the
CIPHER model to recalibrate in a population admitted
to a high-risk maternity unit in order to guide decisions
around admission to the ICU.

Conclusions
The CIPHER model determines the risk of death or need
for significant organ support in a population of pregnant
and post-partum women receiving critical care, with
clinical utility in both HICs and LMICs. CIPHER has the
potential to be a pragmatic risk prediction tool to iden-
tify women at highest risk for adverse ICU outcomes
and to assist with counseling patients and their families
regarding management within the ICU. Ultimately, once
validated, the CIPHER model could be applied globally
to reduce the burden of pregnancy-related morbidity
and mortality.

Additional files

Additional file 1: Table S1. CIPHER (Collaborative Integrated Pregnancy
High-dependency Estimate of Risk) cohort collaborators and site contribution.
Table S2. Patient characteristics and univariate analysis results generated
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through complete case analysis. Table S3. Characteristics of women with and
without missing data. (DOCX 43 kb)

Additional file 2: CIPHER (Collaborative Integrated Pregnancy High-
dependency Estimate of Risk) model clinical calculator. (XLSX 12 kb)
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