Clinical features and outcomes of critically ill patients with elizabethkingia meningoseptica: An emerging pathogen

Abdullah Umair

Nosheen Nasir

Follow this and additional works at: https://ecommons.aku.edu/pakistan_fhs_mc_med_med_med

Part of the Infectious Disease Commons, Internal Medicine Commons, and the Pathological Conditions, Signs and Symptoms Commons
Clinical features and outcomes of critically ill patients with *Elizabethkingia meningoseptica*: an emerging pathogen

Abdullah Umair¹, Nosheen Nasir²

¹Medical College, Aga Khan University, Karachi; ²Section of Adult Infectious Diseases, Department of Medicine, Aga Khan University, Karachi, Pakistan

Background: *Elizabethkingia meningoseptica*, formerly known as *Chryseobacterium meningosepticum*, is a non-motile, non-fastidious, catalase and oxidase-positive, aerobic, glucose-non-fermentative, Gram-negative bacillus that was first defined by Elizabeth O. King in 1959. It has emerged as an opportunistic pathogen that has infected patients in extreme age groups and immunocompromised individuals, especially in intensive care settings. There has been an increased interest in this pathogen due to its increasing occurrence around the world, ubiquitous nature, and inherent capacity for antimicrobial resistance.

Methods: We describe an observational study at a tertiary care center in Karachi, Pakistan, based on patients admitted between January 2013 and December 2018, with *E. meningoseptica* infections. All patients were confirmed to have a positive clinical culture specimen for *E. meningoseptica* along with symptoms and signs consistent with infection. Data were collected on a structured proforma from the Hospital Information Management Systems.

Results: Sixteen patients with *E. meningoseptica* that met the criteria for infection were identified, 13 of whom required admission. Eight patients had bacteremia in addition to confirmed *E. meningoseptica* infection. Two of the isolates were multi-drug resistant and only sensitive to minocycline. Nine out of 13 patients that were admitted required intubation and mechanical ventilation. The median length of hospital stay was 13 days, and five out of the 13 patients died during the hospital stay.

Conclusion: This is the largest case series to date reporting *E. meningoseptica* infections and highlights the importance of this organism as an emerging nosocomial pathogen.

Key Words: Chryseobacterium; *Elizabethkingia meningoseptica*; Nosocomial infection

INTRODUCTION

Elizabethkingia meningoseptica, formerly known as *Chryseobacterium meningosepticum*, is a non-motile, non-fastidious, catalase and oxidase-positive, aerobic, glucose-non-fermentative, Gram-negative bacillus that was first defined by Elizabeth O. King in 1959 [1]. The *Elizabethkingia* genus has been noted due to the genetic makeup that facilitates a large degree of genetic variability and subsequent antimicrobial resistance. This, combined with lack of literature reports on the wide distribution in nature and of adequate treatment regimens have led to high mortality rates in hospital-settings, particularly in intensive care units (ICUs), since 2004 [2].
Elizabethkingia meningoseptica is an opportunistic pathogen infecting people in the extremes of age and the immunocompromised, especially in intensive care settings.

We are describing the largest case series to date reporting *E. meningoseptica* infections.

Our study found that *Chryseobacterium meningoseptica* is an emerging nosocomial pathogen causing mortality in patients requiring intensive care and outcomes are better if isolates are susceptible to quinolones.

Key Messages

- *Elizabethkingia meningoseptica* is an opportunistic pathogen infecting people in the extremes of age and the immunocompromised, especially in intensive care settings.
- We are describing the largest case series to date reporting *E. meningoseptica* infections.
- Our study found that *Chryseobacterium meningoseptica* is an emerging nosocomial pathogen causing mortality in patients requiring intensive care and outcomes are better if isolates are susceptible to quinolones.

Materials and Methods

The study received an exemption from ethical approval from the Aga Khan University Ethics Review Committee (ERC #2019-1786-4439) and requirement of informed consent was waived due to retrospective nature of study. Data was anonymized and no personal identifiers were collected.

This was an observational study of patients admitted between January 2013 and December 2018, with *E. meningoseptica* infections. All patients were confirmed to have a positive clinical culture specimen for *E. meningoseptica* along with signs and symptoms consistent with infection. All patients presumed to be colonized but not infected were excluded. Data were collected on a structured proforma from the Hospital Information Management Systems. Identification and susceptibility of *E. meningoseptica* isolated from cultures were performed by automated systems in accordance with Clinical Laboratory Standards Institute recommendations. Identification of *E. meningoseptica* was determined by a Vitek 2 system (bioMerieux, Marcy-l’Étoile, France).

Definitions

Infection was defined based on clinical presentation along with patient-related factors and microbiological diagnosis. The Center for disease control/National Healthcare Safety Network definitions [9] for specific types of infections were used. A multidisciplinary team of doctors including infectious disease consultants, pulmonologists, and intensivists was involved in case identification and management. Patients were considered to be colonized if they had positive culture results for the organism but no signs and symptoms to suggest active infection based on the primary physician evaluation and continued status of good health without treatment. Patients were considered to have co-infection if a clinically significant true pathogen was identified simultaneously from a culture specimen and the patient improved after corresponding treatment. Patients were considered to have co-colonization if the pathogen isolated was a known contaminant or did not produce signs and symptoms consistent with infection. Polymicrobial infection was defined as the presence of another bacteria or fungi in the same culture specimen. Multi-drug resistance was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories [10]. Death was confirmed as all-cause mortality during hospitalization.
Statistical Analysis
Data were analyzed using IBM SPSS ver. 19 (IBM Corp., Armonk, NY, USA). Descriptive analysis was performed for demographic features with median and interquartile range values reported for quantitative variables such as age and length of hospital stay, and frequency (percentage) were reported for qualitative variables such as sex, comorbid conditions, mortality, and complications. A P-value ≤ 0.05 was considered statistically significant. Data were kept confidential, and no personal identifiers were used.

RESULTS
Sixteen patients with *E. meningoseptica* infections were identified between 2013 and 2018, 13 of whom required hospital admission, constituting an infection rate of 2.9 per 100,000 admissions. The median age was 29 years for six males and seven females, with ages ranging from 3 days to 83 years. The most common comorbid conditions were diabetes (5/13) and hypertension (5/13). The average Charlson’s comorbidity index was 3.3. Three patients had underlying malignancy, and five patients had a history of repeated hospitalization. Eleven patients were admitted to the ICU. Eight of 13 patients had bacteremia with *E. meningosepticum*, and the most common source of bacteremia was central line-associated bloodstream infection in six patients. Among other sites of infection, one had urinary tract infection, two had meningitis, two had pneumonia, and one had infective endocarditis. Nine patients had mono-microbial growth, whereas four had polymicrobial growth in culture. Of 13 patients, eight required a Foley catheter and nine required a central venous catheter, endotracheal intubation, and mechanical ventilation. The clinical characteristics

<table>
<thead>
<tr>
<th>No.</th>
<th>Age/sex</th>
<th>Associated disease</th>
<th>Site of infection</th>
<th>Type of strain</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Term baby at the 2nd day of life</td>
<td>None</td>
<td>Meningitis</td>
<td>Drug sensitive</td>
<td>Ciprofloxacin</td>
<td>Recovered</td>
</tr>
<tr>
<td>2</td>
<td>Preterm 33-week-baby girl brought to NICU at the 3rd day of life</td>
<td>Respiratory distress syndrome, bilateral intraventricular hemorrhage</td>
<td>Bloodstream infection (umbilical vein catheterization)</td>
<td>Drug sensitive</td>
<td>Minocycline</td>
<td>Recovered</td>
</tr>
<tr>
<td>3</td>
<td>5 day/F</td>
<td>Subglottic stenosis</td>
<td>Bloodstream infection (source unclear)</td>
<td>Drug sensitive</td>
<td>Levofloxacin</td>
<td>Recovered</td>
</tr>
<tr>
<td>4</td>
<td>19 yr/M</td>
<td>SLE, CKD</td>
<td>Central line-associated bloodstream infection</td>
<td>Drug sensitive</td>
<td>Cotrimoxazole</td>
<td>Recovered</td>
</tr>
<tr>
<td>5</td>
<td>22 yr/M</td>
<td>Status post-RTA with anoxic brain injury, craniotomy, tracheostomy, liver injury</td>
<td>Central line-associated bloodstream infection</td>
<td>Multi-drug resistant</td>
<td>Minocycline</td>
<td>Recovered</td>
</tr>
<tr>
<td>6</td>
<td>25 yr/F</td>
<td>Pregnancy induced hypertension, post-partum hemorrhage</td>
<td>Urinary tract infection</td>
<td>Drug sensitive</td>
<td>Cefixime</td>
<td>Recovered</td>
</tr>
<tr>
<td>7</td>
<td>29 yr/M</td>
<td>Dengue hemorrhagic fever</td>
<td>Central line-associated bloodstream infection</td>
<td>Drug sensitive</td>
<td>Meropenem</td>
<td>Recovered</td>
</tr>
<tr>
<td>8</td>
<td>41 yr/F</td>
<td>DM, HTN, APLA syndrome, left MCA stroke</td>
<td>Bloodstream infection (infective endocarditis)</td>
<td>Multi-drug resistant</td>
<td>Minocycline</td>
<td>Death</td>
</tr>
<tr>
<td>9</td>
<td>54 yr/F</td>
<td>DM, HTN, esophageal carcinoma</td>
<td>Hospital-acquired pneumonia</td>
<td>Drug sensitive</td>
<td>Levofloxacin</td>
<td>Death</td>
</tr>
<tr>
<td>10</td>
<td>58 yr/M</td>
<td>DM, HTN, IHD</td>
<td>Hospital-acquired pneumonia</td>
<td>Drug resistant</td>
<td>Cotrimoxazole</td>
<td>Death</td>
</tr>
<tr>
<td>11</td>
<td>65 yr/F</td>
<td>DM, CLD, glioblastoma grade IV</td>
<td>Central line-associated bloodstream infection</td>
<td>Drug sensitive</td>
<td>Minocycline</td>
<td>Death</td>
</tr>
<tr>
<td>12</td>
<td>76 yr/F</td>
<td>DM, HTN, IHD, CKD</td>
<td>Meningitis</td>
<td>Drug sensitive</td>
<td>Levofloxacin+ cotrimoxazole</td>
<td>Recovered</td>
</tr>
<tr>
<td>13</td>
<td>86 yr/M</td>
<td>DM, HTN, IHD</td>
<td>Central line-associated bloodstream infection</td>
<td>Drug sensitive</td>
<td>Levofloxacin</td>
<td>Death</td>
</tr>
</tbody>
</table>

NICU: neonatal intensive care unit; SLE: systemic lupus erythematosus; CKD: chronic kidney disease; RTA: road traffic accident; DM: diabetes mellitus; HTN: hypertension; APLA: anti-phospholipid antibody; MCA: middle cerebral artery; IHD: ischemic heart disease; CLD: chronic liver disease.
of all 13 patients are summarized in Table 1. *Elizabethkingia meningoseptica* was sensitive to quinolones in five of 13 isolates. Two of the *E. meningoseptica* isolates were multi-drug resistant with sensitivity only to minocycline, which was the drug used for definitive treatment. The susceptibility pattern of all isolates is summarized in Figure 1. Five of 13 patients were treated with a quinolone, four with ceftriaxone, and four with minocycline. However, culture appropriate antibiotics were not initiated in two patients. The most common co-infection was with multi-drug resistant *Acinetobacter* (n = 2) or *Pseudomonas aeruginosa* (n = 2). Five of 13 patients died, two cases were referred for palliative care in view of advanced underlying malignancy, and the median length of hospital stay was 13 days. All five patients who died had a history of repeat hospitalization and significant comorbidities. All five of these patients were mechanically ventilated and underwent invasive catheterization. *E. meningoseptica* was isolated from the blood of three patients and from tracheal aspirate in one patient who had undergone esophagectomy, thoracotomy, and tracheostomy. Death could be attributed to *E. meningoseptica* infe-
tion in two of five patients. One patient had repeated isolation of the organism from blood cultures due to infective endocarditis, and the other had nosocomial pneumonia after prolonged hospitalization.

DISCUSSION

Our study identified and analyzed *Elizabeth meningoseptica* infections in patients with underlying comorbidities, particularly in patients that required frequent hospitalizations. While many isolated case reports and series have been reported [11-16], only a few [17] have included more than four *Elizabethkingia* cases (Table 2). There are no reports on *Elizabethkingia* cases from Pakistan. Our study identified 16 patients in the last six years with *Elizabethkingia meningosepticum* infections. Unlike other case series with predominantly neonatal cases [17], our patients had a median age of 29 years. Similar to other case reports, the infections were urinary tract infection and meningitis [11,16]. The outcomes have been variable, with significant mortality among neonates [17]. However, patients with isolates susceptible to quinolones and treated with Ciprofloxacin had better survival outcomes [14]. This result is similar to patients that of who were treated with a quinolone in our study.

E. meningosepticum is resistant to most commonly used antimicrobials; therefore, options for treatment are limited. Most studies have established that clinical isolates are resistant to aminoglycosides and beta lactams, with notable exception of piperacillin-tazobactam, and show sensitivities to fluoroquinolones and tetracyclines [15]. These patterns were consistent with the results of this study.

This study is a single-center case series with several inherent limitations such as the small sample size and unavailability of molecular testing and minimum inhibitory concentration data on all isolates. However, this study is the largest to date and the first from Pakistan, to report clinical features and treatment outcomes of *E. meningoseptica* infections. Moreover, it offers insight into the sensitivity pattern of this organism in our region. *E. meningosepticum* is an emerging nosocomial pathogen that causes mortality in patients requiring intensive care.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.
Elizabethkingia meningoseptica: an emerging pathogen

