January 2005

Frequency of fab subtypes in acute myeloid leukemia patients at Aga Khan University Hospital Karachi

Mahadev Sajanmal Harani
Aga Khan University

Salman Adil
Aga Khan University, salman.adil@aku.edu

Mohammad Usman Shaikh
Aga Khan University

G N Kakepoto
Aga Khan University

Mohammad Khurshid
Aga Khan University, mohammad.khurshid@aku.edu

Follow this and additional works at: https://ecommons.aku.edu/pakistan_fhs_mc_pathol_microbiol
Part of the Pathology Commons

Recommended Citation
Available at: https://ecommons.aku.edu/pakistan_fhs_mc_pathol_microbiol/557
FREQUENCY OF FAB SUBTYPES IN ACUTE MYELOID LEUKEMIA PATIENTS AT AGA KHAN UNIVERSITY HOSPITAL KARACHI

Mahadev S. Harani, Salman Naseem Adil, Mohammad Usman Shaikh, Ghulam Nabi Kakepoto, Mohammad Khurshid,

Department Of Pathology & Microbiology, Aga Khan University, Karachi

Background: Acute myeloid leukemia (AML) is a heterogeneous disease. Therefore, various parameters are needed to classify this disease into subtypes, so that specific treatment approaches can be utilized effectively. The commonly used method for diagnosis and classification is based on FAB criteria using morphology and cytochemical stains. For some of the categories, immunophenotyping is necessary. The aim of present study is to determine the frequency of various subtypes in acute myeloid leukemia using FAB criteria in our population. This will aid in the correct diagnosis of acute leukemia and hence proper management of the patients. Materials and Methods: This is descriptive case control study conducted at Aga Khan University Hospital from January 1999 to December 2000. The total number of subjects was 116 that included both adults and children. The patients were diagnosed on the basis of bone marrow morphology using FAB classification. Cytochemistry was done in all cases, while immunophenotyping was considered only in those cases that were found to be problematic. Results: Among 116 patients, 70 were males and 46 were females with male to female ratio 1.5:1. The age ranged between 6 months to 85 years with a mean age of 32 years. AML-M4 was the predominant French-American-British (FAB) subtype (36.2%) followed by M2 (30.2%), M3 (19.4%), M1 (8.7%), M0 (7.7%), M5a (3.5%), M5b (2.5%) and M6 (0.8%). Conclusions: The most common FAB subtype observed in our study was Acute myelomonocytic leukemia (M4) which is in accordance with studies reported from Saudi Arabia and a previous study reported from our institution. However, other national and international studies have reported Myeloblastic Leukemia with maturation (M2) as the predominant subtype of AML. Keywords: French-American-British (FAB) classification, Acute myeloid Leukemia (AML), subtypes.

INTRODUCTION

Acute myeloid Leukemia is a heterogeneous disease. Therefore parameters are needed to classify this disease into biologic entities to understand its pathogenesis and develop specific treatment approaches. As therapeutic advances were made, distinguishing the subtypes of acute leukemia became increasingly important.

Acute leukemias are classified on the basis of the presumed cell of origin. Concordance between experienced observers in the classification of acute leukemia increases from 70 to 99% when morphologic criteria are supplemented by cytochemical and immunophenotypic information.

The modern era for classification of acute leukemias dates back to 1976, when international group of investigators from France, America and Britain developed a uniform classification system designated as French-American-British (FAB) classification, which was subsequently revised in 1985.

The FAB classification of AML divides cases into eight major groups with subtypes for three of them (Table 1). The classification criteria are based on morphologic and cytochemical features; however for some of the categories, immunophenotyping is necessary. It is lineage-based morphological classification that categorizes cases according to the degree of maturation of the leukemic cells and their lineage differentiation. The major advantage of the FAB classification system is its ease of use. The cytological criteria are well defined; they do not require high technology and can be applied in most laboratories throughout the world. Keeping in view these advantages, the FAB proposal was adopted internationally. It provided long needed standard terminology and was quickly accepted by most of the multi-institutional study groups for management plans and comparison of treatment results between morphologic subtypes for their prognostic significance.

Present study was done to determine the frequency of AML types in our population. As the patients were from all over Pakistan belonging to various ethnic groups, our study thus well represent AML subtypes of the entire country.

Although, it is a single institution based study, the number of cases studied is largest that is ever reported at national level. Hence, our study tends to establish a trend of AML subtypes in Pakistan.

MATERIAL AND METHODS

This is descriptive case-control study done at hematology department of Aga Khan University Hospital. This is a tertiary care hospital receiving
cases from all over the country. The study was conducted over a period of 2 years from January 1999 to December 2000.

Patients with history of previous hematological disorders like myelodysplasia, CML, aplastic anemia and with history prior chemotherapy or radiotherapy were excluded from the study. The patients who were known cases of AML with or without treatment including relapsed cases were also not included.

Table-1: FAB Classification of AML

Myeloblastic leukemia minimally differentiated M0	Myeloblastic leukemia without maturation M1
Myeloblastic leukemia with maturation M2	Hypergranular promyelocytic leukemia M3
Micromegakaryocyte leukemia M4	With bone marrow eosinophilia M4E0
Myelosarcoma M5	Poorly differentiated M5A
Differentiated M5b	Erythroleukemia M6
Megakaryoblastic Leukemia M7	

Based on this, a total of 116 subjects with newly diagnosed untreated de novo AML were included in the study. It included patients of all age groups and both sexes.

The diagnosis of AML was established according to the standard practice, and was based on peripheral blood and bone marrow morphology and cytochemistry. Immunophenotyping was done where considered essential. Hematological parameters were done on Coulter counter (model stak-8).

Bone marrow aspiration was done from posterior iliac crest. A written consent was taken from patients or parents as appropriate. In every case, 6-8 smears were made; two of them with peripheral smears were stained by Leishman’s stain. In addition following cytochemical stains were carried out on peripheral blood and bone marrow smears in each case: Sudan black B (SBB), periodic acid-Schiff (PAS), myeloperoxidase (MPO) and alpha naphthyl acetate esterase (ANAE) by commercially provided kits from Sigma Diagnostic according to manufacturer’s instructions. Immunophenotyping was carried out in some patients with diagnostic difficulties and was performed by 2 color flow cytometric analysis of bone marrow aspirate or peripheral blood specimens with a Becton Dickinson (Mountain View, Calif) FAC Scan instrument. After mononuclear cell enrichment by centrifugation over Histopaque-1077 (Sigma, St. Louis Mo), samples were studied for surface antigen expression using a panel of 15 monoclonal antibodies supplied by (Becton Dickinson, San Jose, Calif and Dako Denmark).

All the cases were reviewed by first and third author independently. On the basis of morphology, cytochemistry and immunophenotyping, AML was classified into its various subtypes. (M0-M7) using FAB criteria. (Table-1). The presence or absence of Auer rod in each bone marrow film was also noted.

RESULTS

Of 116 cases, 70 were males and 40 were females with male to female ratio 1.7:1. The mean age was 32 years (range 6 months - 85 years), 21 cases were up to the age of 15 years comprising of 17 males and 4 females and their age ranges between 6 months - 15 years. Their hematological parameters are given in Table 2. The CBC showed a wide range of variation in hemoglobin concentration and platelets ranging from subnormal to normal. Their Leukocyte count also showed variation from leucopenia to hyper leukocytosis.

In our study, we found AML (M4 FAB subtypes) to be the commonest comprising 42 out of 116 of total cases (36.25%). This also included 6 cases of M4Eo variant. The frequency of various AML subtypes according to FAB classification is given in Figure 1.

Figure 1: French –American –British (FAB) Subtypes in 116 cases of AML.

The cases were further divided in adult and children group. Both groups revealed M4 as a most common FAB type followed by M2. Relative frequencies of various subtypes for adults and children are illustrated in Table 3.

Auer rods were present in 36.2% (42 cases). They were more common in M3 subtype (9/12, 75%) followed by M2 (18/35, 51.4%), M4 (12/42, 28.5%), M1 (2/10, 20%) and M5 (1/7, 14.2%). The number of Auer rods per cell was consistently greater in M3 subtype. No Auer rods were observed in the M0 or M6 subtype.

Table-2: Haematological parameters in AML patients (n = 116)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin (g/dl)</td>
<td>8.4</td>
<td>2.2-14.4</td>
</tr>
<tr>
<td>White Cell Count (10^9/l)</td>
<td>63.39</td>
<td>0.6-497.4</td>
</tr>
<tr>
<td>Platelet count (10^9/l)</td>
<td>48.9</td>
<td>1.0-270.0</td>
</tr>
</tbody>
</table>
The mean age

Arber et al

Swirsky

Spence

a revised

Chaudry

classification of these diseases.

guidelines for both hematologists and non specialists

Present

Kakepoto et al

Hassan

that FAB is still favourite and popular among and western studies is probably due to different

Author/

Year/ No of Cases

Table 3: FAB distribution of AML according to age group (n=116)

<table>
<thead>
<tr>
<th>Fab Group</th>
<th>< 15 Years n %</th>
<th>> 15 Years n %</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>05 (23.8)</td>
<td>04 (4.2)</td>
</tr>
<tr>
<td>M1</td>
<td>01 (4.7)</td>
<td>09 (9.4)</td>
</tr>
<tr>
<td>M2</td>
<td>06 (28.5)</td>
<td>29 (30.5)</td>
</tr>
<tr>
<td>M3</td>
<td>00 (0)</td>
<td>12 (12.6)</td>
</tr>
<tr>
<td>M4</td>
<td>07 (33.3)</td>
<td>35 (36.8)</td>
</tr>
<tr>
<td>M5 a</td>
<td>00 (0)</td>
<td>04 (4.2)</td>
</tr>
<tr>
<td>M5 b</td>
<td>01 (4.7)</td>
<td>02 (2.1)</td>
</tr>
<tr>
<td>M6</td>
<td>01 (4.7)</td>
<td>00 (0)</td>
</tr>
<tr>
<td>M7</td>
<td>00 (0)</td>
<td>00 (0)</td>
</tr>
<tr>
<td>Total</td>
<td>21 (100)</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

With the introduction during the late 1960s and 1970s of increasingly effective therapy for acute leukemias, it became necessary to determine subgroups, which might require different treatment approaches. In 1976 FAB system of classification was introduced, which was subsequently revised at various times to improve concordance. This system provided structured criteria for the diagnosis of various subtypes of AML and is based mainly on morphological and cytochemical features; for some of the categories, immunophenotyping is necessary. Since than it has been widely adopted nationally and internationally for classification of acute leukemias, although ambiguities still give rise to confusion and it has been the subject of recent criticism. So, in 1997 a revised WHO classification of AML was published which included cytogenetic studies as well. However this classification is not practiced at national level because of financial constraints. The clinical and biological significance is also claimed for the system which accounts for distinct prognostic differences for various subtypes and their close association with chromosomal abnormalities. Although FAB proposals may be considered over simplification, but they do serve to provide the guidelines for both hematologists and non specialists and facilitate quick, consistent diagnosis and classification of these diseases. It is for these reasons that FAB is still favourite and popular among Pakistani hematologists.

Table 4: FAB Classification of AML in various centers in adults

<table>
<thead>
<tr>
<th>Author/ Year/ No of Cases</th>
<th>M0%</th>
<th>M1%</th>
<th>M2%</th>
<th>M3%</th>
<th>M4%</th>
<th>M5%</th>
<th>M6%</th>
<th>M7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swirsky et al 1986 (U.K) n=619</td>
<td>00</td>
<td>30</td>
<td>25</td>
<td>5</td>
<td>23</td>
<td>13</td>
<td>2.4</td>
<td>00</td>
</tr>
<tr>
<td>Spence et al 1988 (KSA) n=121</td>
<td>1.7</td>
<td>1.7</td>
<td>14.9</td>
<td>8.3</td>
<td>57.8</td>
<td>13.2</td>
<td>1.7</td>
<td>00</td>
</tr>
<tr>
<td>Rana et al 1990 (Libya) n=54</td>
<td>00</td>
<td>7</td>
<td>57</td>
<td>15</td>
<td>13</td>
<td>4</td>
<td>4</td>
<td>00</td>
</tr>
<tr>
<td>Hassan et al 1993 (Pak) n=62</td>
<td>1.6</td>
<td>22.5</td>
<td>32.2</td>
<td>9.1</td>
<td>22.5</td>
<td>8.6</td>
<td>1.6</td>
<td>00</td>
</tr>
<tr>
<td>Chaudry et al 1993 (Pak) n=54</td>
<td>00</td>
<td>13</td>
<td>44.4</td>
<td>11.1</td>
<td>24</td>
<td>3.7</td>
<td>3.7</td>
<td>00</td>
</tr>
<tr>
<td>Harakati et al 1998 (KSA) n=52</td>
<td>00</td>
<td>2</td>
<td>4</td>
<td>17</td>
<td>40</td>
<td>33</td>
<td>00</td>
<td>04</td>
</tr>
<tr>
<td>Khalid et al 1998 (USA) n=78</td>
<td>8.9</td>
<td>19.2</td>
<td>27.0</td>
<td>9.0</td>
<td>20.5</td>
<td>11.5</td>
<td>2.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Kakepoto et al 2002 (Pak.) n=74</td>
<td>00</td>
<td>8.1</td>
<td>16</td>
<td>15</td>
<td>46</td>
<td>9.5</td>
<td>00</td>
<td>2.7</td>
</tr>
<tr>
<td>Arber et al 2003 (USA) n=255</td>
<td>7.0</td>
<td>19.2</td>
<td>28.67</td>
<td>8.7</td>
<td>26.7</td>
<td>4.8</td>
<td>2.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Present Study n= 95</td>
<td>1.2</td>
<td>9.4</td>
<td>30.5</td>
<td>12.6</td>
<td>36.8</td>
<td>6.3</td>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

The FAB distribution of AML has been extensively studied in the past decades at national and international levels. In table 4 the adult results are compared with other series using FAB system. Most published data indicate the predominance of M2 as a most common subtype. Occurrence of this subtype is also common after primary malignancy. However, two studies from Saudi Kingdom reported predominance of M4 and M5 subtypes. Nakase et al showed AML-M4 as common subtype in Australian population compared to Japanese, where AML-M2 is common. Present study also confirms M4 as the most common type followed by M2. This is in concordance with the previously published results from our institution by Kakepoto et al. Many of the differences in AML subtypes may be due to the subjectivity of morphologic diagnosis together with variable nature of acute myeloid leukemia subtypes, with no real demarcation. Some genetic factors may be responsible for a particular FAB subtype of AML in our population. Secondly most studies at national level have small number of patients and probably with underutilization of cytochemical stains. Moreover these studies were not subjected to immunophenotyping that may be because of error in diagnosis. The other reason for this discrepancy may be patients of different ethnic group and/or geographical variation.

Auer rods were seen in 36% of cases with highest frequency in M3. Spence et al reported Auer rods in 40.6% of cases in their series. These results are consistent with present study.

Male to female ratio in present study is 1.5:1, which is in concordance with national and international studies. The mean age (32 years) at presentation seems to be lower than the expected mean age reported in western countries where AML peaks in incidence after the 6th decade of life. However, this is similar to mean age reported in studies from Saudi Arabia and Pakistan. The difference of mean age between present study and western studies is probably due to different geographical distribution.
CONCLUSION

In conclusion the most common type observed in our study was Acute Myelomonocytic Leukemia (M4) followed by Acute Myeloblastic Leukemia with maturation (M2). Although demographic features is not the aim of our study but this is in accordance with other national studies.

A multi-institutional study with large sample size from other areas of Pakistan is needed to confirm our findings. It is desirable that more than one experienced observer should examine the material before a final diagnosis is made. A full range of cytomedical status is essential with immunophenotyping studies where appropriate for proper identification of the acute leukemias.

ACKNOWLEDGEMENT

Authors thank Mr. Munir Gillani and Ms. Rozina Rehman for typing of manuscript and secretarial support and Dr. Bushra Moiz, Assistant Professor for the critical review of the same.

REFERENCES

Address for Correspondence:
Dr. Mahadev S. Harani, Department of Pathology & Microbiology, Aga Khan University, Karachi, Pakistan