November 1998

Accumulation of methotrexate in human tissues following high-dose methotrexate therapy

M P. Iqbal
Aga Khan University, perwaiz.iqbal@aku.edu

Follow this and additional works at: https://ecommons.aku.edu/pakistan_fhs_mc_bbs
Part of the Biochemistry Commons

Recommended Citation
Available at: https://ecommons.aku.edu/pakistan_fhs_mc_bbs/380
Accumulation of Methotrexate in Human Tissues Following High-Dose Methotrexate Therapy

M. Perwaiz Iqbal (Department of Biochemistry, The Aga Khan University, Karachi.)

Abstract

Methotrexate concentration was analyzed in a number of tissues of a patient of osteogenic sarcoma who had been on high-dose methotrexate therapy for nearly 6 months. Gall bladder and kidney contained the highest concentration of the drug, followed by testis, small intestine, skeletal muscle, bone marrow, lung, spleen, heart and liver. Although, compared to kidney the liver contained relatively small amount of the drug, yet nearly 115th of the total drug in liver was in bound form. This bound form of methotrexate is most likely associated with multiple forms of dihydrofolate reductase. The total concentration of methotrexate in kidney is 80 fold higher than the concentration of the drug in liver and 28 fold higher than the concentration in bone marrow. This suggests that in high-dose methotrexate therapy, nephrotoxicity is the more immediate threat to the patient than hepatotoxicity and bone marrow suppression (JPMA 4&341, 1998).

Introduction

Antifolate drug methotrexate (MTX) has wide application in the treatment of a variety of neoplasms. It is widely used in high dosages along with “leucovorin rescue” in the treatment of osteogenic sarcoma. This therapy has been quite effective, however, occasional reports of clinical toxicity do appear in the literature. Despite extensive use of the drug in the treatment of cancer, data pertaining to its accumulation in various human tissues is scanty especially after high dosage protocols. In this paper, we report the accumulation of MTX in human tissues after multiple cycles of high-dose MTX in a patient suffering from osteogenic sarcoma.

Patients and Methods

Tissue samples were provided by the University of California at Los Angeles Center for Health Sciences, Los Angeles, of a patient who died of metastatic osteogenic sarcoma. This patient was a 16 year old boy and was being treated with 4-hour infusions of MTX (200 mg/kg). He had received thirteen cycles of MTX over a period of six months. Each infusion of the drug was preceded by intravenous hydration and urinary alkalinization and Ca leucovorin rescue was initiated 4 hours following the completion of MTX infusion. A week following the last infusion, the patient died of sepsis. An autopsy was performed and tissue specimens of liver, kidney, spleen, bone marrow, heart, skeletal muscle, jejunum, thyroid, lung, testis and gall bladder were obtained for analysis of free and protein-bound MTX.

Tissues were rinsed with cold 0.15 M NaCl and dried on a filter paper. A piece of each tissue was weighed and homogenized in a homogenizer using 3 volumes of 0.06 M citrate buffer, pH 7.4 per gram of tissue using a procedure described by Rothenberg et al. The homogenate was centrifuged at 30,000xg for 15 min and the supernatant solution was divided into two parts. One part was subjected to exhaustive dialysis overnight against 0.06 M citrate buffer, pH 7.4 containing an anion exchange resin Ag 2x8 (Bio-Rad Laboratories) and the non-dialyzable MTX in the dialysand was assayed by a
sensitive ligand binding radioassay. Total MTX in the other half (not subjected to dialysis) was also determined by the same procedure. Protein concentration in the cytoplasmic contents of the tissues was determined by the method of Lowry et al. Hemoglobin contents in some of these tissues (bone marrow, heart, spleen and skeletal muscle) were determined by the benzidine method and subtracted from the total protein concentration of that particular tissue.

Results

<table>
<thead>
<tr>
<th>Organ</th>
<th>ng total MTX/mg protein</th>
<th>ng Bound MTX/mg protein</th>
<th>ng free MTX/mg protein</th>
<th>% bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gall bladder (bile)</td>
<td>10,250</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td>2,408</td>
<td>337</td>
<td>2,071</td>
<td>14</td>
</tr>
<tr>
<td>Testis</td>
<td>167</td>
<td>5</td>
<td>167</td>
<td>3</td>
</tr>
<tr>
<td>Jejunum</td>
<td>110</td>
<td>7</td>
<td>103</td>
<td>6</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>105</td>
<td>8</td>
<td>97</td>
<td>8</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>86</td>
<td>8</td>
<td>78</td>
<td>9</td>
</tr>
<tr>
<td>Lung</td>
<td>64</td>
<td>5</td>
<td>59</td>
<td>8</td>
</tr>
<tr>
<td>Spleen</td>
<td>47</td>
<td>4</td>
<td>43</td>
<td>9</td>
</tr>
<tr>
<td>Thyroid</td>
<td>43</td>
<td>6</td>
<td>37</td>
<td>14</td>
</tr>
<tr>
<td>Heart</td>
<td>32</td>
<td>3</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>Liver</td>
<td>30</td>
<td>6</td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>

Table shows the free and the protein-bound MTX concentration values in the cytoplasmic samples of various human tissues: Highest levels of the drug were found in gall bladder, kidney and testis, while jejunum, skeletal muscle and bone marrow had levels between 86 ng and 110 ng per mg protein. Liver, spleen, lung and heart did not show a substantial uptake of the drug.

Discussion

High levels of the drug in gallbladder, kidney and small intestine are consistent with the findings of Anderson et al who have shown kidney and gall bladder having the drug concentration more than any other tissue in the body. This is further supported by various models of MTX pharmacokinetics.
showing elimination of the drug mainly through kidney and biliary secretion\(^\text{16}\), therefore, most of the drug was expected to be present in the kidney and the gall bladder. Because of high levels of plasma MTX due to repeated infusions, other tissues such as heart, skeletal muscle, lungs and thyroid did show accumulation of the drug to some degree. This may suggest that at high plasma levels of the drug, the tissues generally spared at low plasma levels of the drug still permit drug intake probably by passive diffusion. Since there is usually very little dihydrofolate reductase (the principal binding determinant of MTX) inside these tissues\(^\text{17}\), only a small component of the total drug is in the bound form, whereas most of the drug is in the free state. On the other hand, liver compared to other tissues has been shown to have the maximum amount of dihydrofolate reductase\(^\text{17,18}\) and therefore, nearly 1/5th of the total drug in liver was found to be in the bound form. Since the amount of enzyme in most human es including liver has been repoited to be less than 0.08 nmol/gm of it is unlikely that all of the protein-bound MDC is in association with high affinity form of dihydrofolate reductase. This alludes to the presence of a form of dihydrofolate reductase having low affinity for MTX. We have reported earlier the presence of such a form in normal human colon\(^\text{20}\) and goat liver\(^\text{21}\). High dose methotrexate therapy is now being increasingly used in Pakistan\(^\text{18,19,22}\). Although short-term renal toxicity and hematological and mucosal toxicities are prevented by hydration and alkalization of urine with \(\text{NaHCO}_3\) and leucovorn rescue, respectively, yet repeated exposure to high doses of MTX may lead to serious toxic effects due to the accumulation of the drug in various tissues of the body. These side-effects originate primarily because of the inhibition of de novo DNA synthesis. Because of an 80-fold higher accumulation of total MTX in the kidney compared to the liver (Table), it is plausible that the chance of nephrotoxicity would be much higher than hepatotoxicity, once multiple cycles of the drug have been administered. This observation is consistent with the results by Pitman et al. who have reported that 60% of their patients on high-dose MTX experience a serum creatinine elevation of more than 50%\(^\text{23}\). Similarly, the concentration of total MTX in kidney was found to be 28 times more than the concentration of the drug in bone marrow. This again suggests that nephrotoxicity is more likely to occur first in such patients than bone marrow suppression. Another important observation of this study was a very high concentration of MTX in the bile. Biliary excretion of MTX in humans after an intravenous injection of the drug has been reported\(^\text{19,24}\). However, there is not much information available on accumulation of the drug in bile after repeated cycles of therapy. Bile, therefore, could serve as a reservoir of the drug leading to a continuous supply of the drug for several hours after an infusion of MTX and thereby, contributing towards the adverse effect of the therapy. A more detailed investigation on a large number of patients receiving high-dose MDC would be required to have a better understanding of the associated toxic effects.

Acknowledgements

This work was supported by a research grant (No.S-AKU-Bio-239) by the Pakistan Sciences Foundation. Valuable suggestions by Professor M. Anwar Waqar and Dr. Ikmm Burney in improving this manuscript are gratefully acknowledged.

References

22. Usman N. Osteogenic sarcoma. 10th Annual Meeting of the Medical Research Society of Pakistan, Lahore, Shaukat Khanam Memorial Hospital and Research Centre, 1996.