Fluorosis: A Rare Cause of Spinal Cord Compression

Maimoona Siddiqui
Liaquat National Hospital

Azra Zafar
Liaquat National Hospital

M. Salman
Liaquat National Hospital

Yaseen Pathan
Liaquat National Hospital

Follow this and additional works at: https://ecommons.aku.edu/pjns
Part of the Neurology Commons

Recommended Citation
Siddiqui, Maimoona; Zafar, Azra; Salman, M.; and Pathan, Yaseen (2007) "Fluorosis: A Rare Cause of Spinal Cord Compression,"
Pakistan Journal of Neurological Sciences (PJNS): Vol. 2 : Iss. 4 , Article 5.
Available at: https://ecommons.aku.edu/pjns/vol2/iss4/5
Excessive ingestion of fluoride through water, food or dust causes acute debilitating toxicity called fluorosis.¹ Acute fluoride intoxication is rarely seen and results most frequently from accidental ingestion of large amounts of fluoride compounds. Chronic fluoride poisoning is more common and can affect animals as well as humans.²

Spinal cord compression due to ossification of the posterior longitudinal ligament secondary to fluorosis is very rare. There are only a handful of reports, mainly from endemic areas where fluorosis has been implicated as a cause of myelopathy, and none from Pakistan. Neurological sequelae in skeletal fluorosis arise principally because of the mechanical compression of the spinal cord and nerve roots brought about by osteophytosis and sclerosis of the vertebral column. We report a case of progressive myelopathy secondary to probable fluorosis, with remarkable imaging features.

We report the case of a 35-year-old woman, resident of Sibbi (Balochistan), with no known co-morbidities, who presented with complaints of pain in the neck, backache and progressive weakness of upper and lower limbs for two years. The weakness had increased in severity to the...
point that she was unable to sit or stand without support. She also complained of numbness in lower limbs but there was no associated bladder or bowel dysfunction.

On examination, she was conscious and had intact higher mental functions. Vision was decreased to only light perception; cranial nerves were otherwise intact. On motor examination, there was no atrophy or fasciculation, tone was normal, and strength was 3/5 in both upper limbs and 2/5 in the lower limbs. Deep-tendon reflexes were brisk in both upper and lower limbs with bilateral up-going plantar responses. Superficial abdominal reflexes were absent and sensory level was noted at C4. The clinical impression was of cervical myelopathy.

Standard laboratory tests, including complete blood count, erythrocyte sedimentation rate, electrolytes, calcium, albumin, and alkaline phosphatase were within normal limits. Plain x-rays of the lumbosacral spine showed ossification of the sacrospinous ligament, while x-rays of the cervical spine showed formation of new bone at the level of C1-2 and posteriorly in the canal along the line of the posterior longitudinal ligament. CT scan of the cervical spine confirmed ossification of the posterior longitudinal ligament causing narrowing of the spinal canal, with MRI of the cervical spinal also displaying cord compression (Figures 1 & 2).

DISCUSSION

Skeletal fluorosis is a bone disease caused by excessive consumption of fluoride. The United Nations Children's Fund (UNICEF) estimates that “fluorosis is endemic in at least 25 countries across the globe,” being most severe and widespread in India and China. Common causes include inhalation of fluoride dusts or fumes by industry workers, use of coal as an indoor fuel source, and consumption of fluoride from drinking water. Characteristic changes of fluorotic spine include ossification of the posterior longitudinal ligament and hardened bone, making the spine a continuous column of bone.

Neurological involvement in fluorosis occurs in the advanced stage of the disease and is due to compression of the spinal cord and nerve roots, separately or in combination. These features usually develop after exposure to high fluoride (greater than 4 parts per million) for longer than 10 years.

Spinal cord involvement is commonest in the cervical region and in one study has been reported to constitute 56% of 136 patients of fluorosis and neurological complications. Neurological symptoms are a late occurrence and signify far advance disease. Radicular features include muscle weakness with asymmetric atrophy, fasciculation, nerve root pain and acral paresthesias. Myelopathic features are characterized by more abrupt onset and include spastic paraplegia or quadriplegia, hyperreflexia, positive Babinski sign, clonus, and a variety of sensory deficits.

The course is usually progressive. The largest numbers of cases with neurological manifestations are reported from India, with only a few case reports from other parts of the world and, to the best of our knowledge, none from...
Interest in fluorosis has recently grown in Pakistan, with reports of skeletal and dental fluorosis, although no case so far of neurofluorosis.

Pakistan is considered a low fluoride country where 84% of all drinking water sources have suboptimal (0.7 ppm) levels of fluoride. The available data are conflicting as there are studies conducted showing increased prevalence of dental and skeletal fluorosis from Karachi, Punjab, and the Northwest Frontier Province. Fluoride levels in the drinking water of Sibbi (Balochistan province), where our patient lives, are optimal to high. In addition, coal is used as a major fuel source in that area. With characteristic radiological features showing ossification of the posterior longitudinal ligament and osteosclerosis of bones, we believe fluorosis is the cause of myelopathy in this patient.

CONCLUSION

Fluorosis should be considered in the differential diagnosis of ossification of the posterior longitudinal ligament (OPLL), especially in patients from endemic areas. MR imaging in such cases is characteristic. There is also a need to search for a cost-effective method of defluoridation of water.

REFERENCES