Hyperglycemia in acute subarachnoid hemorrhage

Maher Bano Malik
Benazir Bhutto Hospital

Jehangeer Shoro
Almana Hospitals KSA

Haris Majid Rajput
Pakistan Institute of Medical Sciences Islamabad

Follow this and additional works at: https://ecommons.aku.edu/pjns

Part of the Neurology Commons

Recommended Citation
Available at: https://ecommons.aku.edu/pjns/vol13/iss3/3
HYPERGLYCEMIA IN ACUTE SUBARACHNOID HEMORRHAGE

Maheer Ban Malik1, Jehangeer Shoro2, Haris Majid Rajput3
1Consultant Neurologist, Benazir Bhutto Hospital 2Senior Registrar, Almana Hospitals KSA 3Assistant Professor, Pakistan Institute of Medical Sciences

Correspondence to: Haris Majid Rajput Email: harisrajput@gmail.com
Date of submission: April 29, 2018 Date of revision: May 30, 2018 Date of acceptance: June 12, 2018

ABSTRACT

INTRODUCTION: Subarachnoid hemorrhage (SAH) is associated with high inhospital mortality and morbidity. Hyperglycemia occurs frequently in acute medical conditions including SAH and is associated with poor outcome. The aim of the study was to determine the frequency of Hyperglycemia in patients of subarachnoid hemorrhage.

MATERIALS AND METHODS: This was a cross sectional study that was conducted from September 3, 2013 to March 2, 2014 in Department of Neurology, Pakistan Institute of Medical Sciences, Islamabad. All patients who met the inclusion criteria were selected for the study. Subarachnoid hemorrhage was diagnosed on the basis of plain CT scan brain. Random blood sugar levels of all patients of SAH were checked with glucometer on the day of presentation.

RESULTS: A total of 75 patients were included. The mean age of patients was 40.05 years with standard deviation of 15.790 years. Out of 75 patients, 56 (74.67%) patients were male and 19 (25.33%) patients were female. 59 (78.67%) patients with subarachnoid hemorrhage had hyperglycemia while 16 (21.33%) patients had no hyperglycemia.

CONCLUSION: In our study hyperglycemia is frequently found in patients of subarachnoid hemorrhage. Early detection and treatment of hyperglycemia should be a part of initial management so as to minimize the mortality.

INTRODUCTION: Subarachnoid hemorrhage is an acute, critical medical emergency, with incidence of 9 per 100,000 person-years. 85% of cases of subarachnoid hemorrhage are due to rupture of cerebral aneurysms. Mortality for posterior circulation aneurysms is (10-15% for all aneurysms) higher as compared to anterior circulation aneurysms1. Clinical features of subarachnoid hemorrhage are severe and generalized, thunderclap headache, vomiting, neck stiffness, loss of consciousness, decerebrate posture, jerking of limbs or deficit of extremities2. Common complications are rebleed, hydrocephalus and reactive vasospasm3. Diagnosis can be made on CT brain, MRA is valuable with 96.7% sensitivity in detection of intracranial aneurysm.4 Definitive treatment is obliteration of aneurysm via endovascular procedures or surgical clipping1, external ventricular drains prevent secondary hydrocephalus5. Hyperglycemia occurs frequently in aneurysmal subarachnoid hemorrhage and is associated with delayed cerebral ischemia and poor outcome.6 Worldwide various studies have identified the frequency and impact of hyperglycemia on the outcome in the patients of subarachnoid hemorrhage but very few local studies are available in even determining the frequency of this commonly prevalent condition in patients of subarachnoid hemorrhage.

The aim of the study was to detect the frequency of hyperglycemia in patients of subarachnoid hemorrhage in our setup to generate the data in local population to emphasize checking the plasma glucose levels as a routine part of investigations in SAH.

MATERIALS AND METHODS:
This was a descriptive case study conducted in the Department of Neurology, Pakistan Institute of Medical Sciences, Islamabad for six months from September 3, 2013 to March 02, 2013 after taking permission from...
ethical committee of hospital. A total of 75 patients of subarachnoid hemorrhage were enrolled using non probability consecutive sampling. Sample size was calculated using WHO sample size calculator. An informed written consent was taken from all the patients. All patients of both genders above 13 years of age with subarachnoid hemorrhage (diagnosed on basis of CT scan brain) were enrolled in this study. Diagnostic criteria for SAH was defined on basis of CT scan brain if any one of the following is present on CT Brain: Hyperdensity (blood) in inter hemispheric fissure or sylvian fissure or perimesencephalic cistern with or without ventricular/parenchymal extension. Hyperglycemia was defined as Blood glucose levels >140 mg/dl checked with glucometer on the day of presentation. Those patients who had lobar (frontal/parietal/temporal/occipital regions of brain) or central (brainstem/basal ganglia/thalamus) bleed on CT scan brain and Patients having prior history of diabetes mellitus were excluded from the study. Patients who fulfilled the criteria as per the findings of CT scan brain underwent detailed history and Neurological examination. Random blood sugar levels of all the patients of subarachnoid hemorrhage were checked with glucometer on the day of presentation. The data was entered on a standardized Performa. Data was entered and analyzed using SPSS version 17. Mean and standard deviation was calculated for numerical variables (age). Frequencies and percentages were calculated for categorical variables (gender, hyperglycemia).

RESULTS:

A total of 75 patients were included in this study. The mean age of patients was 34.41±17.12. The minimum age of patients was 13 years, maximum age was 75 years, median age of patients was 44 years as shown in table 1:

<table>
<thead>
<tr>
<th>Table no: 1</th>
<th>Age distribution of patients in years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no of patients (n)</td>
<td>Valid</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
</tr>
<tr>
<td>Mean age of patients in years</td>
<td>46.05</td>
</tr>
<tr>
<td>Median age of patients in years</td>
<td>44.00</td>
</tr>
<tr>
<td>Mode age of patients in years</td>
<td>35</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>15.790</td>
</tr>
<tr>
<td>Range age of patients in years</td>
<td>62</td>
</tr>
<tr>
<td>Minimum age of patients in years</td>
<td>13</td>
</tr>
<tr>
<td>Maximum age of patients in years</td>
<td>75</td>
</tr>
</tbody>
</table>

Out of 75 patients, 56 (74.67 %) patients were male and 19 (25.33%) patients were females as shown in Figure 1.

![Figure no: 1 Gender of patients](image)

24 patients were in 13-35 years of age group, 32 patients were in 36-55 years of age group and 19 patients were in 56-80 years of age group as shown in figure 2:

![Figure no: 2 Distribution of patients in age groups](image)

59 (78.67%) patients with subarachnoid hemorrhage had hyperglycemia while 16 (21.33%) patients did not have hyperglycemia as shown in figure no: 3
RESULTS:
The minimum age of patients was 13 years, maximum was entered and analyzed using SPSS version 17.

CONCLUSION:
Aneurysmal subarachnoid hemorrhage (SAH) is a devastating disease with high morbidity and mortality rates. Although these rates have decreased in the last decades, due to improving institutional care, still the 30 days case fatality rate is 35-45 percent so subarachnoid hemorrhage is an extremely fatal subtype of stroke. Prevention and treatment of neurologic complications such as rebleeding, hydrocephalus, and delayed cerebral ischemia (DCI) are obvious targets to improve prognosis and can be improved with multidisciplinary management approach. Besides neurologic complications, patients with SAH often have non neurologic medical complications that can influence outcome such as neurocardiogenic injury, neurogenic pulmonary edema, hyperglycemia and electrolyte imbalance. Hyperglycemia occurs frequently in aneurysmal subarachnoid hemorrhage and is associated with delayed cerebral ischemia and poor outcome. Several mechanisms have been proposed for hyperglycemia, one possible explanation is that following subarachnoid hemorrhage there is activation of hypothalamo-pituitary axis which in turn activates sympathetic nervous system leading to increase release of stress hormones enhancing glucose metabolism. Another possibility is activation of inflammatory response and release of cytokines which contribute to delayed cerebral ischemia. Inpatient glucose levels above 7.8 mmol/litre (140 mg/dl) are associated with poor outcome. Plasma glucose levels during hospitalization predict the outcome of disease and can be effectively managed with insulin therapy. Hyperglycemia is common in neurologic insults such as subarachnoid hemorrhage, traumatic brain injury and ischemic stroke, and associated with poor clinical outcomes.

DISCUSSION:

Figure no: 3
Hyperglycemia in patients with subarachnoid hemorrhage

<table>
<thead>
<tr>
<th>Age group of patients</th>
<th>Hyperglycemia</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>13-35 years of age group</td>
<td>16</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>36-55 years of age group</td>
<td>25</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>56-80 years of age group</td>
<td>18</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>16</td>
<td>75</td>
</tr>
</tbody>
</table>

43 male patients and 16 female patients had hyperglycemia while 13 male patients and 3 female patients had no hyperglycemia with insignificant p value of 0.495 as shown in figure no: 4
outcome so intensive insulin therapy (IIT) has been suggested and used in these disorders. As treatment options are available for hyperglycemia, it has attracted increasing attention as a target for intervention, although adequate and safe glycemic control is difficult to achieve in patients with SAH. Because hyperglycemia seems to be implicated in the pathway from SAH to poor clinical outcome, insight into these mechanisms may reveal new treatment options.

In our study, the mean age of patients was 46.05 years with standard deviation of 15.790 years. 56 (74.67%) patients were male and 19 (25.33%) patients were female and 78.67% patients of subarachnoid hemorrhage had hyperglycemia. These results of our study were comparable to the results of other studies. In a study conducted by Ghosh S et al.17 showed that of the 1090 patients included in the study, 429 (39.36%) were males. The mean age of the females was 4 years less than that of the males. Hyperglycemia at admission was termed as a serum glucose reading of >140 mg/dl on admission and 869 (74.22%) patients were found to have hyperglycemia at admission. Patients with hyperglycemia had 20.48% chance of a good outcome compared to a 64.85% chance of good outcome in patients with no hyperglycemia (P < 0.0001). Patients with hyperglycemia at admission also had a higher risk of death (20.58%).

Kruyt ND et al.18 included 17 cohort studies or clinical trials of 4095 patients with aneurysmal subarachnoid hemorrhage admitted within 72 hours that documented admission glucose levels or the rate of hyperglycemia. The mean admission glucose level was 9.3 mmol/L (range, 7.4 to 10.9 mmol/L; 14 studies, 3373 patients) and the median proportion of patients with hyperglycemia was 69% (range, 29 to 100; 16 studies, 3995 patients; cutoff levels of hyperglycemia, 5.7 to 12.0 mmol/L). The pooled OR (8 studies, 2164 patients) for poor outcome associated with hyperglycemia was 3.1 (range 2.3 to 4.3). Cutoff points for defining hyperglycemia varied across studies (6.4 to 11.1 mmol/L), but this had no clear effect on the observed OR for poor outcome.

In another study conducted by Wartenberg KE et al.19 found that hyperglycemia (>11.1 mmol/L) was present in 30% of patients at admission. Other frequent medical complications observed were temperature >38.3 degrees C (54%), followed by anemia (36%), hypertension (>160 mm Hg systolic; 27%), hypernatremia >150 mmol/L (22%), pneumonia (20%), hypotension (<90 mm Hg systolic, 18%), pulmonary edema (14%), and hyponatremia <130 mmol/L (14%). Out of these abnormalities, Fever, anemia and hyperglycemia significantly predicted poor clinical outcome after adjustment for age, Hunt-Hess grade, aneurysm size, rebleeding, and cerebral infarction due to vasospasm.

Lanzino G et al.20 studied plasma glucose level in 616 patients admitted within 72 hours after SAH. Admission glucose levels showed a statistically significant association with Glasgow Coma Scale scores, volume of blood on computerized tomography (CT) scans, and level of consciousness at admission. Elevated glucose levels at admission correlated with poor outcome. A good recovery, as assessed by the Glasgow Outcome Scale at 3 months, occurred in 70.2% of patients with normal glucose levels (< or = 120 mg/dl) and in 53.7% of patients with hyperglycemia (> 120 mg/dl) (P = 0.002). The death rates for these two groups were 6.7% and 19.9%, respectively (P = 0.001). Increased glucose levels between Days 3 and 7 also predicted a poor outcome; in these subgroups, good recovery was observed in 132 (73.7%) of 179 patients who had normal glucose levels (< or = 120 mg/dl) and 160 (49.7%) of 322 who had elevated glucose levels (> 120 mg/dl) (P < 0.0001). Death occurred in 6.7% and 20.8% of the two groups, respectively (P < 0.0001).

Badjatia N et al.21 showed that mean admission blood glucose levels in higher range versus low range (176.6 +/- 40.3 mg/dL vs 162.3 +/- 47.8 mg/dL) and mean inpatient blood glucose values (166.2 +/- 24.7 mg/dL vs. 155.8 +/- 29.7 mg/dL) were significantly higher in patients with vasospasm (a potentially life threatening complication of subarachnoid hemorrhage). Hyperglycemia was also associated with longer length of stay in the neurointensive care unit (14.5 +/- 7.1 days vs. 11.6 +/- 5.4 days) and poor outcome at discharge (modified Rankin score > or = 3: 58.9% vs. 18.8%).

Our study has some limitations that need to be addressed. Determination of association of hyperglycemia with subarachnoid hemorrhage is sparse in literature and this study should be taken as an initial step in determining this association in our local population. Extrapolation of these data should therefore be done in the light of this limitation, although the results have shown that the relationship between hyperglycemia and SAH is robust and consistent.

CONCLUSION:

In our study significant number of patients of subarachnoid hemorrhage had hyperglycemia at hospital admission and this association was found to be consistent. As hyperglycemia in acute subarachnoid hemorrhage is a potential risk factor of delayed cerebral ischemia and warrants poor clinical outcome so
increased plasma glucose levels in previously normoglycemic patients of SAH should not go underrecognised. Further studies are needed to show the effect of hyperglycemia on poor outcome in SAH and for confirmation of potential benefit of adequate glycemic control after subarachnoid hemorrhage.

REFERENCES

Conflict of interest: Author declares no conflict of interest.
Funding disclosure: Nil

Author’s contribution:
Maher Bano Malik; data collection, data analysis, manuscript writing, manuscript review
Jehangeer Shoro; data collection, data analysis, manuscript writing
Haris Majid Rajput; data collection, data analysis, manuscript writing