Frequency of vitamin d deficiency in multiple sclerosis patients: a cross sectional study.

Samar Iltaf Pechuho
Shaheed Mohtarma Benazir Bhutto Medical Uni University, Larkana

Alam Ibrahim Siddiqui
Shaheed Mohtarma Benazir Bhutto Medical University, Larkana

Sajjad Husain Jalbani
Shaheed Mohtarma Benazir Bhutto Medical University, Larkana

Safia Sultana
Shaheed Mohtarma Benazir Bhutto Medical University, Larkana

Samina Shaikh
Shaheed Mohtarma Benazir Bhutto Medical University, Larkana

See next page for additional authors

Follow this and additional works at: https://ecommons.aku.edu/pjns

Part of the Neurology Commons

Recommended Citation
Pechuho, Samar Iltaf; Siddiqui, Alam Ibrahim; Jalbani, Sajjad Husain; Sultana, Safia; Shaikh, Samina; Shaikh, Nagina; Soomro, Fahim; Kumar, Mukesh; Rehman, Abdul; Qazi, Tariq; Soomro, Shoaib; Shaikh, Rizwan; Tunio, Ghulam Mustafa; and Memon, Abdul Qayoom (2018) "Frequency of vitamin d deficiency in multiple sclerosis patients: a cross sectional study.," Pakistan Journal of Neurological Sciences (PJNS): Vol. 13 : Iss. 2 , Article 6.
Available at: https://ecommons.aku.edu/pjns/vol13/iss2/6
Frequency of vitamin d deficiency in multiple sclerosis patients: a cross sectional study.

Authors
Samar Iltaf Pechuho, Alam Ibrahim Siddiqui, Sajjad Husain Jalbani, Safia Sultana, Samina Shaikh, Nagina Shaikh, Fahim Soomro, Mukesh Kumar, Abdul Rehman, Tariq Qazi, Shoaib Soomro, Rizwan Shaikh, Ghulam Mustafa Tunio, and Abdul Qayoom Memon

This original article is available in Pakistan Journal of Neurological Sciences (PJNS): https://ecommons.aku.edu/pjns/vol13/iss2/6
FREQUENCY OF VITAMIN D DEFICIENCY IN MULTIPLE SCLEROSIS PATIENTS:
A Cross sectional study

INTRODUCTION: Vitamin D deficiency is linked to poor treatment response in patients with Multiple Sclerosis. The aim of this study is to define the frequency of Vitamin D deficiency for early detection and timely intervention leading to improved morbidity rates.

OBJECTIVE: To determine the frequency of vitamin D deficiency in Multiple sclerosis patients present at neurology ward of a tertiary care hospital in Larkana

DURATION OF STUDY: March 2016 to August 2016

STUDY DESIGN: Cross-sectional study

Setting: Neurology Ward Chandka Medical College Hospital, Larkana

SUBJECTS: Ages of 18 and 60 years, either gender, diagnosis of MS for more than 3 months, sun exposure for at least 30 minutes thrice per week for and give written informed consent were included in this study.

METHODS: This study was approved by an ethical review committee of the institute. Patients fulfilling inclusion criteria were enrolled in this study after taking written informed consent. The demographic variables like name, age, gender, duration of sun exposure & duration of disease were collected by the researcher. Blood Sample for a vitamin D level blood sample of these patients was drawn on the same day and sent to a laboratory for vitamin D level in the pathological lab of CMCH. Blood Vitamin D levels in this study were measured by radioimmunoassay. The data was analyzed using SPSS version 19.

RESULTS: Mean age of enrolled participants was 43.6±11 years. Of 85 enrolled participants, 36 (42.4%) were male and 49 (57.6%) were female, the mean duration of disease was 6.2±1.4 months, 70 (82.4%) participants were married and 15 (17.6%) were unmarried, 49 (57.6%) were employed, 43 (50.6%) were exposed to the sun for < 40 minutes a day. The frequency of vitamin D deficiency among patients with multiple sclerosis was 17 (20%) cases.

CONCLUSIONS: It is concluded from this study that the frequency of vitamin D deficiency among patients with multiple sclerosis was 20%.

KEYWORDS: Multiple sclerosis, vitamin D deficiency, sun exposure
INTRODUCTION:

Multiple sclerosis (MS) is an autoimmune, inflammatory, neurodegenerative, T-lymphocyte-mediated disease of uncertain etiology. Mostly it is because of genetic susceptibility; epidemiologic studies suggest environmental influence because the development of MS correlates most strongly with rising latitude in both the northern and southern hemispheres.1

The diagnosis relies on recognition of the clinical patterns of the disease. Relapsing and remitting neurologic deficits is the hallmark of the disease in most patients. The pathologic hallmark of MS is focal demyelination within the brain and spinal cord. Although the lesions can occur at any site within the central nervous system, they have a predilection for involvement of the periventricular white matter, the corpus callosum, optic nerves, and the dorsal spinal cord. MS affects females two to three times more than male, risk increases from adolescence up to the age of 35 and then gradually declines and is rare after the age of 65. MS is rare in equatorial climates, and its prevalence increases with distance from the equator. Higher latitudes result in lower ultraviolet radiation exposure and lower vitamin D levels2, from the relation with latitude; it appears that low solar UltraViolet B (UVB) doses during winter are an important risk factor.3 However, low UVB exposure in summer also plays a role. This is an observation that MS patients consistently have lower levels of vitamin D, one recent study has shown prevalence of vitamin D as 17% in patients with MS.4 It is suggested that vitamin D may help to decrease the risk of MS and those patients with higher vitamin D levels are less likely to develop MS.5 It is observed that higher vitamin D levels may help to reduce MS activity and a slower the rate of progression of MS.6 Higher vitamin D levels also help to prevent disability in MS patients.7 A case-control study compared the serum vitamin D levels of 103 MS patients with 110 controls and found that for every 10-nmol/L increase in serum 25(OH)D level the odds of MS was reduced by 19% in women, suggesting a “protective” effect of higher vitamin D levels.8 In addition, a negative correlation was found between Expanded Disability Status Scale scores among female MS patients and 25(OH)D levels. There are several other studies have supported the finding that lower levels of vitamin D in MS patients are associated with more severe disability.9 Lower levels during relapses have also been reported in patients with relapse-remitting MS.10-12 One small safety study of vitamin D for 28 weeks showed a decline in the number of gadolinium-enhancing lesions on magnetic resonance imaging per patient; this led to a 25(OH)D serum concentration of 386 nmol/L (158 ng/mL) without causing hypercalcemia, hypercalciuria, or other complication.13 Ongoing, Randomized control trials are assessing vitamin D supplementation for the treatment and prevention of MS.14

RATIONALE:

The rationale of study is that the studies on the subject under consideration are scarce in Pakistan and secondly most of the studies done on retrospective data. Since VIT D deficiency is related to poor treatment results in patients with MS, this study by determining the frequency was lead to realization for early detection and timely intervention ultimately leading to improved morbidity rates.

OBJECTIVE

To determine the frequency of vitamin D deficiency in Multiple sclerosis patients present at neurology ward of a tertiary care hospital in Larkana.

OPERATIONAL DEFINITION

MULTIPLE SCLEROSIS:

Was defined as isolated limb weakness of power<2/5 on MRC score with the increased tone of > 2 scores determined by Modified Ashworth Scale on clinical examination > 3 months (Appendix I and II respectively) and according to the 2010 McDonald diagnostic criteria of MS (Appendix III)

VITAMIN D DEFICIENCY:

Patients were labeled Vitamin D deficient if less than 25 nmol/l at the time of presentation.

MATERIAL AND METHOD

Study Design: Cross-sectional study
Setting: This study was conducted at the Neurology Ward Chandka Medical College Hospital, Larkana.

Duration of Study: Six months March 2016 to August 2016

Sample Size: Taking the prevalence of VIT D deficiency as 17%,4, confidence interval at 95% and margin of error at 8% and putting this information in Epi...
Info 7, the sample size calculated is 85.

Sampling Technique: Non - Probability consecutive sampling

Inclusion Criteria:
1. Between the ages of 18 and 60 years,
2. Both genders
3. Diagnosis of MS as per operational definition for > 3 months
4. Give written informed consent prior to any testing under this protocol, including screening tests and evaluations that are not considered part of the subject’s routine care.
5. Sun exposure for at least 30 minutes thrice per week

Exclusion Criteria:
1. Patients that have other co-morbidities like heart failure determined by echo as EF>25 renal disease determined by serum Cr > 3mg/dl
2. Endocrine disorders like hyperparathyroidism determined by blood PTH levels > 10 ng/dl
3. Any patient on long-term steroid treatment for less than 3 months determined by physician prescription slip
4. Patients already on vitamin D therapy for more than 3 months. Doctor’s prescription as evidence.

Data collection procedure:

The permission for the data collection was sought from the Ethical review committee of the hospital, the study was conducted in the Department of Neurology, department, Chandka Medical College, Larkana. After taking the informed written consent from the patients. Diagnosed cases of Multiple sclerosis was enrolled in the study after fulfilling inclusion/exclusion criteria. The researcher was collect data on a prescribed questionnaire regarding demographic variables like name, age, gender, duration of sun exposure & duration of disease. Blood Sample for a vitamin D level blood sample of these patients was drawn on the same day and sent to a laboratory for vitamin D level in the pathological lab of CMCH. Blood Vitamin D levels in this study was measured by radioimmunoassay. The test was done free of cost at CMCH, Larkana lab and the results of these tests were collected on reporting date and was entered on the Performa by researcher herself.

Data analysis procedure:

Data was analyzed on a computer using SPSS software version 21. Mean and SD was calculated for age, duration of disease, duration of sun exposure and Vitamin D levels. Frequency and percentages were calculated for gender, age group, marital status, and employment status and outcome variable i-e vitamin D deficiency. Effect variable like age, gender, marital status, and employment status, duration of sun exposure and duration of disease were stratified to see the effects of these on the outcome variable. Applying chi-square test with p value <0.05 taken as significant.

Ethical consideration:

Permission for data collection was taken from the head of the department of the ward. Written informed consent was obtained from patients while ensuring that the data was kept confidential. Patients were thoroughly informed about the objectives and methods of the study.

RESULTS

A total of 85 patients were enrolled in this study during study period. The mean age of enrolled participants was 43.6±11 years. Majority of patients were less than 45 years accounting for 43 (50.6%) cases. Of 85 enrolled participants, 36 (42.4%) were male and 49 (57.6%) were female, the mean duration of disease was 6.2±1.4 months, 70 (82.4%) participants were married and 15 (17.6%) were unmarried, 49 (57.6%) were employed, 43 (50.6%) were exposed to the sun for < 40 minutes a day (Graph 1).

Outcome of study

The frequency of vitamin D deficiency among patients with multiple sclerosis was 17 (20%) cases (Graph 2)

Stratified analysis:

Stratified analysis of frequency of vitamin D deficiency among patients with multiple sclerosis by age, gender, duration of disease, duration of sun exposure, marital status and employment status is summarized in tables 1-6.

Stratified analysis by age:

Of patients <45 years of age, 9 (20.9%) had vitamin D deficiency compared to 8 (19%) cases among patients of age >= 45 years (p=0.522).
Stratified analysis by gender:

Of male patients, 3 (8.3%) had vitamin D deficiency compared to 14 (28.6%) cases among female patients (p=0.019).

Stratified analysis by duration of disease: Of patients with duration of disease of <6 months of age, 8 (14.8%) had vitamin D deficiency compared to 9 (29%) cases among patients of with duration of disease >= 6 months (p=0.099).

Stratified analysis by duration of exposure to the sun: Of patients with duration of sun exposure <40 minutes, 11 (25.6%) had vitamin D deficiency compared to 6 (14.3%) cases among patients of with duration exposure to the sun >= 40 minutes (p=0.151).

Stratified analysis by marital status:

Of married patients, 15 (21.4%) had vitamin D deficiency compared to 2 (13.3%) cases among unmarried patients (p=0.378).

Stratified analysis by employment status:

Of employed patients, 14 (28.6%) had vitamin D deficiency compared to 3 (8.3%) cases among unemployed patients (p=0.019).

Graph 1:
DISTRIBUTION OF EXPOSURE TO SUN AMONG ENROLLED PARTICIPANTS (n=85)

Graph 2:
FREQUENCY OF VITAMIN D DEFICIENCY IN PATIENTS WITH MULTIPLE SCLEROSIS (n=143)

Table 1: STRATIFIED ANALYSIS OF FREQUENCY OF VITAMIN D DEFICIENCY IN PATIENTS WITH MULTIPLE SCLEROSIS BY AGE

<table>
<thead>
<tr>
<th>Vitamin D deficiency</th>
<th><45 years (n=43)</th>
<th>>=45 years (n=42)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>9 (20.9%)</td>
<td>8 (19%)</td>
<td>0.522</td>
</tr>
<tr>
<td>No</td>
<td>34 (79.1%)</td>
<td>34 (81%)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2:
STRATIFIED ANALYSIS OF FREQUENCY OF VITAMIN D DEFICIENCY IN PATIENTS WITH MULTIPLE SCLEROSIS BY SEX

<table>
<thead>
<tr>
<th>Vitamin D deficiency</th>
<th>Male (n=36)</th>
<th>Female (n=49)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>3 (8.3%)</td>
<td>14 (28.6%)</td>
<td>0.019</td>
</tr>
<tr>
<td>No</td>
<td>33 (91.7%)</td>
<td>35 (71.4%)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: STRATIFIED ANALYSIS OF FREQUENCY OF VITAMIN D DEFICIENCY IN PATIENTS WITH MULTIPLE SCLEROSIS BY DURATION OF DISEASE

<table>
<thead>
<tr>
<th>Duration of disease</th>
<th>Vitamin D deficiency</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td><6 months (n=54)</td>
<td>Yes</td>
<td>14.8%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>85.2%</td>
</tr>
<tr>
<td>≥6 months (n=31)</td>
<td>Yes</td>
<td>29%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>71%</td>
</tr>
</tbody>
</table>

Table 4: STRATIFIED ANALYSIS OF FREQUENCY OF VITAMIN D DEFICIENCY IN PATIENTS WITH MULTIPLE SCLEROSIS BY DURATION OF SUN EXPOSURE

<table>
<thead>
<tr>
<th>Duration of sun exposure</th>
<th>Vitamin D deficiency</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td><40 minutes (n=43)</td>
<td>Yes</td>
<td>25.6%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>74.4%</td>
</tr>
<tr>
<td>≥40 minutes (n=42)</td>
<td>Yes</td>
<td>14.3%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>85.7%</td>
</tr>
</tbody>
</table>

Table 5: STRATIFIED ANALYSIS OF FREQUENCY OF VITAMIN D DEFICIENCY IN PATIENTS WITH MULTIPLE SCLEROSIS BY MARITAL STATUS

<table>
<thead>
<tr>
<th>Marital status</th>
<th>Vitamin D deficiency</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Married (n=70)</td>
<td>Yes</td>
<td>21.4%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>78.6%</td>
</tr>
<tr>
<td>Unmarried (n=15)</td>
<td>Yes</td>
<td>13.3%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>86.7%</td>
</tr>
</tbody>
</table>

Table 6: STRATIFIED ANALYSIS OF FREQUENCY OF VITAMIN D DEFICIENCY IN PATIENTS WITH MULTIPLE SCLEROSIS BY EMPLOYMENT STATUS

<table>
<thead>
<tr>
<th>Employment status</th>
<th>Vitamin D deficiency</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employed (n=70)</td>
<td>Yes</td>
<td>28.6%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>71.4%</td>
</tr>
<tr>
<td>Unemployed (n=36)</td>
<td>Yes</td>
<td>8.3%</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>91.7%</td>
</tr>
</tbody>
</table>

DISCUSSION

Hypovitaminosis D is currently one of the most studied environmental risk factors for multiple sclerosis (MS) and is potentially the most promising in terms of new clinical implications. The putative protective role of vitamin D in MS is based on a wide-ranging series of arguments. The first group of arguments exists outside of, or indeed before, the disease, including physiological, metabolic, experimental and immunological factors, in addition to which there are epidemiological data on the effects of latitude, past exposure to sunlight and serum vitamin D levels on the risk of MS in the general population. The second group of arguments stems from data on MS patients derived from biological and therapeutic studies. Diseases that affect central nervous system myelin can be categorized as demyelinating (acquired, usually inflammatory) and dysmyelinating (abnormal formation of myelin, usually due to a genetic disease). The most common autoimmune inflammatory demyelinating disease of the central nervous system is multiple sclerosis (MS).

Several studies have shown that vitamin D levels are lower in MS patients than in controls. In this study, the frequency of vitamin D deficiency among patients with multiple sclerosis was 17% (20%). A recent study showed that in clinically isolated syndrome patients (namely, those suffering a single demyelinating attack that is compatible with MS), vitamin D deficiency was a predictor of developing clinically definite MS. The association of disease activity with vitamin D levels in MS patients has been evaluated in multiple studies that demonstrated a lower MS relapse rate in patients with higher levels of vitamin D. Additionally, low levels of...
vitamin D appear to be associated with high levels of disability as measured by the Expanded Disability Status Scale (EDSS). The EDSS is a commonly used index of clinical disability in MS, with scores ranging from 0 (corresponding to a normal examination and function) to 10 (for death due to MS). Two recent studies conducted in 2014 support this association. The first study, 181 patients were prospectively followed, and EDSS scores were correlated with plasma vitamin D levels. Patients with vitamin D levels >50-nmol/L were 2.78 times more likely to have an EDSS <4 (p=0.0011). The second study was originally designed to evaluate the impact of early versus delayed interferon beta-1b treatment in patients with clinically isolated syndrome. Serum 25(OH)D concentrations were measured at baseline and at 6, 12, and 24 months. Patients were followed for 5 years with clinical assessments and MRI. A 50-nmol/L increase in average serum 25(OH)D levels within the first 12 months predicted a 57% lower rate of new active lesions (p<0.001), a 57% lower relapse rate (p=0.03), and a 25% lower yearly increase in T2 lesion volume (p<0.001) from months 12 to 60. Levels ≥50 nmol/L at following periods of up to 12 months predicted lower EDSS scores (p=0.004) during the subsequent 4 years.

Observational studies correlating vitamin D levels to MS severity cannot prove that increased sun exposure alleviates the symptoms of MS, especially given that severely disabled patients with MS receive less sun exposure, which can cause vitamin D deficiency. Even MS patients who are fully mobile are theoretically more susceptible to vitamin D deficiency because they avoid sun exposure, worsening their symptoms.

CONCLUSION

It is concluded from this study that the frequency of vitamin D deficiency among patients with multiple sclerosis was 20%. The frequency of vitamin D deficiency among male was 8.3% compared to female patients. Of employed patients, 14 (28.6%) had vitamin D deficiency compared to 3 (8.3%) cases among unemployed patients. Most of the patients with overlap syndrome having generalized weakness. In comparison to other study which showed that half of the patients with MFS eventually experienced profound weakness (overlap syndrome) [10].

REFERENCES

INTRODUCTION:

MULTIPLE SCLEROSIS:

Multiple sclerosis patients present at neurology ward of CMCH. Blood Vitamin D levels in this study were measured by liquid chromatography-mass spectrometry. Of male patients, 3 (8.3%) had vitamin D deficiency compared to 3 (8.3%) cases among patients with multiple sclerosis by age, gender, marital status and employment status is summarized in tables for <40 minutes a day (Graph 1).

Of patients with duration of sun exposure <40 minutes a day 10-nmol/L increase in serum 25(OH)D level the odds of EDSS <4 (p=0.0011).25 The prevalence of vitamin D deficiency among patients with multiple sclerosis by employment status (Table 5).

Results: Out of a total of 85 patients, 49 (57.6%) were females and 36 (42.4%) were males. The mean age of patients was 43.6±11 years. Majority of patients were less than 40 years of age (46.5%). Only 13 (15.3%) patients had received long-term steroid treatment for chronic renal disease (Table 1). In this study, it was found that 23 (27.1%) patients were vitamin D deficient, 47 (55.3%) patients were insufficient and 15 (17.6%) patients were normal.

Comparison of the prevalence of vitamin D deficiency among patients with multiple sclerosis by age, gender, marital status and employment status is summarized in tables for <40 minutes a day (Graph 1). Comparison study showed that EDSS <3 was significantly more common in patients with vitamin D deficiency compared to patients with sufficient levels of vitamin D (p=0.001).

Conflict of interest: Author declares no conflict of interest.
Funding disclosure: Nil

Author's contribution:
Dr. Samar Iltaf Pechuho: data collection, data analysis, manuscript writing, manuscript review
Dr. Samar Iltaf Pechuho: data collection, data analysis, manuscript writing, manuscript review
Dr. sajjad Husain Jalbani: data collection, data analysis, manuscript writing, manuscript review
Dr. Safia Sultana: data collection, data analysis, manuscript writing, manuscript review
Dr. Samina Shaikh: data collection, data analysis, manuscript writing, manuscript review
Dr. Nagina Shaikh: data collection, data analysis, manuscript writing, manuscript review
Dr. Fahim Soomro: data collection, data analysis, manuscript writing, manuscript review
Dr. Mukesh Kumar: data collection, data analysis, manuscript writing, manuscript review
Dr. Abdul Rehman: data collection, data analysis, manuscript writing, manuscript review
Dr. Tariq Qazi: data collection, data analysis, manuscript writing, manuscript review
Dr. Shoaib Soomro: data collection, data analysis, manuscript writing, manuscript review
Dr. Rizwan Shaikh: data collection, data analysis, manuscript writing, manuscript review
Dr. Ghulam Mustafa Tunio: data collection, data analysis, manuscript writing, manuscript review
Dr. Abdul Qayoom Memon: data collection, data analysis, manuscript writing, manuscript review
Babar Siddiqui: data collection, data analysis, manuscript writing, manuscript review
Naser Ahmed Pechuho: data collection, data analysis, manuscript writing, manuscript review
Siraj Ahmed Pechuho: data collection, data analysis, manuscript writing, manuscript review
Sahar-u-Nissa: data collection, data analysis, manuscript writing, manuscript review
Tahira Pechuho: data collection, data analysis, manuscript writing, manuscript review
Almas Koong: data collection, data analysis, manuscript writing, manuscript review
Uzma Parveen: data collection, data analysis, manuscript writing, manuscript review
Ganwah Saleem: data collection, data analysis, manuscript writing, manuscript review
Jaweria Ahmed: data collection, data analysis, manuscript writing, manuscript review
Yusra Parveen: data collection, data analysis, manuscript writing, manuscript review