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Abstract: Helicobacter pylori (H.pylori) infection is etiologically associated with severe diseases including
gastric cancer; but its pathogenicity is deeply shaped by the exceptional genomic diversification and
geographic variation of the species. The clinical relevance of strains colonizing Africa is still debated.
This study aimed to explore genomic features and virulence potentials of H. pylori KE21, a typical
African strain isolated from a native Kenyan patient diagnosed with a gastric cancer. A high-quality
circular genome assembly of 1,648,327 bp (1590 genes) obtained as a hybrid of Illumina Miseq
short reads and Oxford Nanopore MinION long reads, clustered within hpAfrica1 population. This
genome revealed a virulome and a mobilome encoding more than hundred features potentiating
a successful colonization, persistent infection, and enhanced disease pathogenesis. Furthermore,
through an experimental infection of gastric epithelial cell lines, strain KE21 showed the ability to
promote interleukin-8 production and to induce cellular alterations resulting from the injection of a
functional CagA oncogene protein into the cells. This study shows that strain KE21 is potentially
virulent and can trigger oncogenic pathways in gastric epithelial cells. Expended genomic and clinical
explorations are required to evaluate the epidemiological importance of H. pylori infection and its
putative complications in the study population.

Keywords: Helicobacter pylori; Kenya; whole genome sequencing; virulence; virulome; mobilome;
Illumina Miseq; Oxford Nanopore MinION
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Key Contribution: This report is the first to depict typical African H. pylori isolated from a native
African patient with gastric cancer. This isolate reveals genomic features evoking an enhanced
virulence and displays the ability to trigger carcinogenic pathways in an experimental infection
model of human gastric epithelial cells. These observations tend to contrast with the reputation of
attenuated strains widely attributed to isolates circulating in Africa.

1. Introduction

Helicobacter pylori is a Gram-negative bacillus colonizing half of the world’s population [1,2] and
is associated with severe gastro-duodenal diseases, including chronic gastritis, peptic ulcer disease,
lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) and gastric adenocarcinoma [3].
Following several epidemiological studies establishing high incidence of gastric cancer in the
H. pylori-infected population [4,5], the International Agency for Research on Cancer (IARC) of
the World Health Organization (WHO) classified this bacteria as a class I carcinogen in 1994 [6].
Nonetheless, in recent years, the pathogenicity of H. pylori has been shown to be deeply shaped by
the exceptional genetic diversity and wide geographic variation of the species. This seems to result
from the distribution and properties of several bacterial features revealed as virulence factors that
grant H. pylori clinical strains with abilities to colonize the human stomach, to persist, and to induce
diseases [7]. The geographic distribution of these virulence factors has emerged which allows the
mapping of the gastric cancer risk worldwide [8].

However, there is persistent incongruence between the prevalence of H. pylori infection and
the incidence of gastric cancer in several regions [8]. The so-called “African enigma” of H. pylori
infection has thus been evoked to refer to the contrast observed within African populations between
the lowest gastric cancer incidence and the highest H. pylori prevalence [9,10]. Several hypotheses
related to the human host, to the environment, and to the bacterium have been postulated to clarify
this enigma [11,12]. Notably, a lower virulence of African strains has been invoked [7]. However, there
is still relatively few studies supporting all these hypotheses [11]. More interestingly, accumulative
data suggest that the gastric ulcer and cancer prevalence in Africa might not be as low as reported
initially [11,13,14]. It remains disconcerting that the age-standardized incidence rate of gastric cancer
in Africa ranges from as high as 20/100,000 in some African regions (i.e., Mali) to as low as 0.3/100,000
in other regions (i.e., Botswana) [13,15,16]. In some African countries such as Kenya, the incidence
and mortality rates of gastric cancer are markedly higher than in developed nations such as United
States/United Kingdom, yet very scarce published data evaluating etiology, epidemiology, prevention
or management exist [13,16]. In this context, studies are needed for circumscribing the epidemiological
and clinical relevance of H. pylori species colonizing different African regions. These studies have the
potential to support current understanding and management of the gastroduodenal disease burden
and its distribution in the continent.

This study is the first to report genomic features and virulence potentials of a H. pylori clinical isolate
retrieved from a native African patient diagnosed with gastric cancer. The aim is to apply genomic
analyses to explore the mobilome and the virulome encoded by the isolate and to experimentally assess
its intrinsic ability to trigger gastric epithelial human cells for promoting oncogenic pathways.

2. Results

2.1. Clinical Outcomes of KE21 Clinical Isolate

H. pylori KE21 was isolated from a gastric biopsy specimen collected by endoscopy from a
61-year-old Kenyan female patient. The patient was referred to the Endoscopy unit at Aga Khan
University Hospital Nairobi, for an upper gastrointestinal endoscopy given a history of severe
abdominal pain and discomfort. Endoscopic examination identified seemingly non-benign and
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protruding gastric lesions that were later histologically identified as signet-ring cell carcinoma with
depth of invasion in the lamina propria (Figure 1). Further explorations identified a pelvic metastasis
of gastric carcinoma. The clinical isolate showed no in vitro resistance to tetracycline (TET) and
levofloxacine (LEVO) at Minimum Inhibitory Concentrations (MICs) 0.19 and 0.25 mg/L, respectively.
However, resistance was noted to clarithromycin (CLA), amoxicillin (AMX), and metronidazole(MTZ)
with MICs of 4 mg/L, 2 mg/L, and ≥256 mg/L, respectively.
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the genome. The pan-genome of orthologous genes from strain KE21 and two universal reference 
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Figure 1. Gastric lesion observed. The panel (A) shows endoscopic image obtained by conventional
white light imaging in the patient’s stomach. An extended protruding lesion spanning over the greater
curvature from the corpus to the antrum of stomach was noted, with irregular and reddened surface,
which was bleeding easily on contact. The margin area of the lesion was saw-toothed onto a background
mucosa marked with redness. The panel (B) shows a histological image obtained by microscopic
examination (20×). This fragment of gastric mucosa was lined by dysplastic foveolar type epithelium,
with a lamina propria exhibiting a poorly differentiated diffuse neoplasm and signet cells (>50%).

2.2. Genomic Features of KE21 Clinical Isolate

The de novo assembly of the genome of strain KE21 resulted in a single circularized chromosome
displayed by one contig sequence of 1,648,327 bp length with a global GC content of 39.1% (Figure 2).
Through the CheckM algorithm, the genome assembly reached a completeness of >99% with no
detected genetic contamination and strain heterogeneity. The WIMP workflow of Epi2Me [17] assigned
99.9% of MinION reads to Helicobacter species. The FastANI [18] used by the DFAST Quality Control
tool estimated the highest average nucleotide identity (ANI) of KE21 genome at 94.8% against H. pylori
CCUG 17874 (GCA_000258845.1). These results conformed the taxonomic assignment of strain KE21 to
H. pylori species. This genome revealed 1590 predicted genes including 1549 coding sequences (CDSs)
through Prokka. Genes encoding thirty-six transfer RNAs (tRNAs) organized into seven clusters
and 15 singletons, two separate sets of 5S-23S and 16S ribosomial RNAs (rRNAs), as well as one
transfer-messenger RNA (tmRNA) could be identified in the genome. The pan-genome of orthologous
genes from strain KE21 and two universal reference genomes, i.e., 26695 and J99, displayed 2508 genes
of which 36.5% (916 genes) formed the core genome and 63.5% (1592 genes) formed the accessory
genome in the shell (Supplementary Material, Tables S1 and S2).

2.2.1. Population Genetics of Strain KE21

We performed a phylogenetic analysis of strain KE21 with additional 15 representative Helicobacter
strains (i.e., 26695, J99, SouthAfrica20, CC33CC, NCTC1354, SU1, L7, India7, DU15, F16, G27, K26A1,
PNG84A, ausabrJ05, and Shebaa) belonging to existing H. pylori genetic populations defined previously
by fineSTRUCTURE and STRUCTURE approaches (Supplementary Materials, Table S3) [19,20]. This
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phylogenetic analysis was accomplished via neighbor-joining tree estimating core genome pairwise
distance by Maximum Likelihood method. This analysis clearly classified H. pylori genomes into
hpAfrica2, hpfrica1, hpNEAfrica, hpAsia2, hpEurope, and hpEastAsia phylogeographic clades. Of note,
strain KE21 strain belonged distinctively to the hpAfrica1 population (Figure 3).
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Figure 2. Overview of the genome of H. pylori KE21 by circo plot with predicted genes. This circo plot
displays an overview of the H. pylori KE21 genome as a circular chromosome of 1,648,327 bp length
with related information shown onto concentric rings. The outermost and inner rings indicate the
genes predicted and annotated by Prokka v. 1.13.3 (Carlton, VIC, Australia, 2018) in the genome. The
rings for the GC content, the GC skew, and the BLAST outcomes using H. pylori 26695 as reference
strain are indicated.

2.2.2. The Mobilome of Strain KE21

No prophage or plasmid could be detected in strain KE21 by using PlasmidSeeker [21] and
PHASTER [22] while two genomic islands with an average lower GC content of 35.6% were identified
(Figure 4). The first island comprised 46 predicted CDS spanning over 40,235 bp (coordinates:
1221910-1262145 in genome sequence) and was located between genes encoding putative FtsZ and
5S-23S rRNAs, an insertion site described previously as a “transposon, plasticity zone” (TnPZ).
As shown in Figure 4, the organization of this TnPZ was typically of type 1b including a cluster of
adjacent vir homologue genes encoding an integrating conjugative element type four secretion system
of type 4 (ICEHptfs4) [23,24]. However, this KE21 ICEHptfs4 cannot be assigned to any of the known
subtypes (Supplementary Materials, Table S4) [23]. The second genomic island had 47 predicted CDS
that were inserted within a chromosomal region of 49,454 bp (coordinates: 706,360-755,813 in genome
sequence) located between genes encoding the 4-hydroxy-tetrahydrodipicolinate reductase (dapB) and
the glutamate racemase (glr), a region known as dg-region [25]. Remarkably, this dg-region encoded
a cluster of cytotoxin-associated genes known as cag pathogenicity island (cagPAI) (Supplementary
Materials, Table S5).
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Figure 4. Genomic islands identified in KE21 isolate. This Figure depicts two genomic islands (GIs)
through the H. pylori KE21, with substantially lower GC content (average ~ 35.6%) compared to the
remaining genome (average ~ 39.1%). (a) The Transposon Plasticity Zone (TnPZ), delimited by genes
of putative FtsZ and 5S-23S rRNAs, and encoding a cluster of vir homolog genes for an integrated
conjugative element of H. pylori type 4 secretion system of type 4 (ICEHptfs4). (b) The dg-region,
delimited by genes encoding the 4-hydroxy-tetrahydrodipicolinate reductase (dapB) and the glutamate
racemase (glr) and described, and encoding a cag pathogenicity island (cagPAI) region.
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2.2.3. The Virulome of Strain KE21

By using ABRicate to screen the genome of H. pylori KE21 against a customized virulome database,
we identified 147 genes that encode proteins whose function relates basically to motility, chemotaxis,
cell-to-cell adherence, persistence, acid resistance, and host tissue damage (Supplementary Material,
Table S6). First, we noted a cagPAI region of 36,507 bp (coordinates: 717,715–754,221) within a dg-region
whose synteny and organization had been previously described as being of type-A (Figure 5A) [25].
A total of 28 CDSs were predicted in this cagPAI including genes of all known components of a
syringe-like type four secretion system (T4SS)—i.e., cagζ/cag1, cagε/cag2, cagδ/cag3, cagγ/cag4, cagβ/cag5,
cagα, cagZ, cagY, cagX, cagW, cagV, cagU, cagT, cagS, cagQ, cagP, cagM, cagN, cagL, cagI, cagH, cagG,
cagF, cagE, cagD, cagC, and cagB—as well as cagA which represent major virulence factors with a
well-acknowledged causative role in gastric cancer development [26,27]. The cagA gene-encoded
CagA oncogene protein of H. pylori KE21, intended for delivery into gastric epithelial cells via the
T4SS machinery, could be predicted (Figure 5). Its N-terminal sequence showed a plecstrin homology
(PH) domain with a conserved K-Xn-X/RXR motif which is required for the bound of CagA to
host membrane phosphatidylserine (PS) as a prerequisite for pathophysiological activities of the
oncoprotein in polarized epithelial cells (Figure 5B) [28]. Furthermore, the C-terminal CagA repeat
sequences comprised three Glu-Pro-IleTyr-Ala (EPIYA) motifs within segments of type ABC, previously
referred to as of Western-type, which may undergo tyrosine phosphorylation to hijack carcinogenic
intracellular pathways (Figure 5C) [27]. Interestingly, proximal and distal to the 34-amino-acid of the
EPIYA-C segment, we identified two variants of CagA-multimerization motifs (yet to be described)
also known as conserved repeat responsible for phosphorylation-independent activity motifs (CM or
CRPIA motifs)—i.e., FPLKRHDKVEDLSKVG and FPLKRRSAKVEDLSKVG. Second, we identified
a vacuolating activity associated gene A (vacA) that encodes VacA protein which is a pore-forming
toxin of H. pylori species with pleiotropic biological effects [29]. Allelic variations of the H. pylori
KE21 vacA was typically of type s1i1d1m1, a genotype associated with increased toxicity, gastric
inflammation, peptic ulcer, and gastric cancer development in previous studies (Figure 6) [29,30]. Third,
genes encoding more 54 putative adhesins for H. pylori KE21 interaction with surface receptors on
gastric epithelial cells could be detected [31]. These include main outer membrane proteins (OMPs)—
e.g., BabA (HopS), OipA (HopH), HopQ (Omp27), HomA, AlpA (HopC), AlpB (HopB), SabB (HopO)
and SabA (HopP)—that are critical in the pathogenesis of H. pylori infection [31–33]. The characteristics
of these genes are shown in Table 1 and in Supplementary Materials, Table S6 and Figures S1 and S2.
Some of the outer membrane proteins (OMPs) were encoded by duplicated gene copies (e.g., babA,
homA). In contrast, genes encoding few putative virulence factors (i.e., BabC or HopU, BabB or
HopT, IceA, and DupA) were not detected in KE21 genome (Table 1 and Supplementary Materials,
Table S6). Furthermore, a cluster of all seven urease genes (i.e., ureA/B, ureI, and ureE-H) that are
required for resistance and survival in the harsh acidic environment of the stomach was detected
in KE21 genome [34]. Finally, the isolate was also equipped with several genes encoding flagella
components (e.g., flgE, flaA, and flaB) and lipopolysaccharides (e.g., rfaJ, rfaC) mediating bacterial
motility and immune modulation while contributing to H. pylori virulence as putative bacterial
endotoxins (Supplementary Materials, Table S6) [35,36]. Overall, the genetic features described above
reveal potentials for successful colonization, persistent infection, and disease pathogenesis during
infection with H. pylori KE21.
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Figure 5. Gene arrangements within the cag pathogenecity island (cagPAI) and CagA sequence
variations of strain KE21. This Figure depicts the genes arrangement withing the cagPAI of H. pylori
KE21 in comparison to those in J99 and 26695 reference strains (A). The genes are drawn as filled arrows.
Analysis of sequence variations of CagA indicates that strain KE21 has a well conserved K-Xn-X/RXR
motif of its plecstrin homology (PH) domain (B). The C-terminal CagA has three EPIYA segments of
type ABC and two CagA-multimerization motifs (CM or CRPIA motif) of type FPLKRHDKVEDLSKVG
and FPLKRRSAKVEDLSKVG which stretch proximal and distal to the EPIYA-C, respectively (C).
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Figure 6. Characterization of vacA gene of strain KE21. This Figure displays aligned vacA sequences
of H. pylori KE21, J99, 26695, SouthAfrica20, and K26A1. The sequences shown focus specifically on
the four main regions of diversity in vacA sequences that have been recognized, namely the signal
sequence region or s-region (A), the intermediate region or i-region (B), the deletion region or d-region
(C), and the middle region or (m)-region (D) [37–39]. The vacA alleles characterized by deletions in s-,
i-, and m-regions correspond to s1, i1, and m1, respectively; otherwise they are classified as to s2, i2,
and m2. In contrast, the vacA allele with a large deletion in d-region corresponds to d2 type; otherwise it
is classified as d1 type. Multiple combinations of s-, i-, d-, and m-region types may be observed [37,39].
Of note, the strain KE21 vacA is of s1i1d1m1 allele.
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Table 1. Main virulence factors encoded in the genome of H. pylori KE21*.

Virulence
Factor Gene Start End % Coverage % Identity Characteristics

CagA hp0547 750,676 754,221 99.49 94.58 1 copy
VacA hp0887 1,114,652 1,118,533 99.69 91.78 s1m1
HtrA hp1018 639,400 640,830 99.93 95.53 1 copy
CGT hp0421 1,272,696 1,273,861 99.66 95.20 1 copy
GGT hp1118 1,371,288 1,372,991 100.00 95.31 1 copy

DupA hp0441 − − − − Absent
IceA hp1209 − − − − Absent

OipA/HopH hp0638 852,806 853,731 99.89 93.85 1 copy in “ON” status
AlpA/HopC hp0912 1,143,117 1,144,676 100.00 94.49 1 copy
AlpB/HopB hp0913 1,144,698 1,146,287 99.81 94.35 1 copy

HopQ/Omp27 hp1177 1,434,514 1,436,428 99.17 88.18 1 copy hopQ type1 allele

BabA/HopS hp1243 1,124,618;
1,507,238

1,126,840;
1,509,404 99.19; 96.69 87.64; 87.32 2 copies

BabB/HopT hp0896 − − − − Absent
BabC/HopU hp0317 − − − − Absent

HomA hp0710 937,597;
1,173,611

93,9589;
1,175,576 98.03; 98.29 85.96; 90.64 2 copies

SabA/Omp17 hp0725 952,657 954,511 97.99 89.10 1 copy
SabB/HopO hp0722 948,177 949,975 98.30 88.06 1 copy

(*) Gene: the gene name as in 26695 reference isolate; Start: start nucleotide-position in the genome of strain KE21;
End: the end nucleotide-position in the genome of strain KE21; % Coverage, the coverage of the query blast against
the reference sequence; % Identity, the proportion of nucleotide matching between the query sequence in strain
KE21 and the reference sequence.

2.3. Experimental Virulence Assays on KE21

To further assess the virulence abilities of H. pylori KE21, we conducted an in vitro infection
experiment using the AGS epithelial cells line. Consistently with an intact and functional cagPAI-related
T4SS [26,27], KE21 showed ability to promote interleukin-8 (IL-8) production and to produce
morphological changes called hummingbird phenotype in AGS cells. Furthermore, a phosphorylated
CagA was detected in AGS cells, attesting the competence of KE21-related T4SS for translocation of a
bioactive oncoprotein in human epithelial cells (Figure 7).
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Figure 7. H. pylori KE21-induced IL-8 secretion and hummingbird phenotype in gastric epithelial cells
line. The panel (a) represents the induction of IL8 during infections of gastric epithelial AGS cell lines.
AGS cells were incubated with or without various H. pylori KE21 or H. pylori 26695 (multiplicity of
infection 50) for 6, 12 and 24 hrs. IL-8 secretion in the culture supernatant was measured via ELISA.
Data are presented as the mean ± standard deviation of three separate experiments. AGS treated with
either H. pylori KE21 or H. pylori 26695 induced high levels of IL8 compared with the untreated one.
The panel (b) shows a microscopic field of human gastric epithelial AGS cells co-infected with H. pylori
KE21 for 12 hrs. Red arrows point out some cells with induced hummingbird phenotype.
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3. Discussion

H. pylori species is characterized by an exceptionally high genetic diversity and geographic
variability driving substantial difference in clinical outcomes between different regions. Despite its
well-acknowledged causative role in severe gastrointestinal diseases including peptic ulcers and gastric
adenocarcinoma; the clinical relevance of African H. pylori strains is still debated given the reported
contrast between the highest prevalence of the infection and the lowest incidence of gastric cancer
in the continent. This discrepant epidemiological situation had been referred to as the so-called
“African enigma” [14]. This study is the first to describe genomic features and virulence potential of
typical African H. pylori isolate retrieved from a native African patient with gastric cancer. Through
the genome of isolate KE21, we screened the expanded virulome of H. pylori species with the aim to
depict its potentialities to promote gastric carcinogenesis in general and signet-ring cell carcinoma
(SRCC) in particular. We thus detected tens of genes encoding factors involved in cell-to-cell adherence,
acid resistance factors, cell motility and chemotaxis, immune response evasion, as well as in direct
tissue damages. An experimental infection of gastric epithelial cells demonstrated the ability of strain
KE21 to induce carcinogenic signals. While this report cannot establish a causality link between the
isolate and the diagnosed gastric cancer in our patient, the discussion made grasps the full scale of the
clinical threat this African H. pylori strain would represent during the infection.

It is notable that this clinical H. pylori strain (KE21) was isolated from a Kenyan patient diagnosed
with gastric SRCC. SRCC is a unique type of gastric cancer classified as diffuse type (in contrast to
intestinal type) according to Lauren’s classification, given its poorly differentiated histological aspect
with the lack of the intercellular adhesion and presence of scattered cells of signet-ring morphology
predisposed to diffuse invasion throughout the stroma [40,41]. This cancer is found in 8 to 30% of
gastric cancers, has unfavorable prognosis while affecting more frequently women from 55 to 61 years
old, consistently around 7 years younger than non-SRCC gastric cancer cases [40,42,43]. Consistently
with this general profile of SRCC cases, our patient was a 61-year-old female. In contrast with the
pathogenicity of intestinal-type gastric cancer that follows the Correa’s cascade consensually linked
with H. pylori infection, the development of diffuse-type gastric cancer remains mostly elusive and
controversial [42]. The SRCC is widely believed to arise from distinct biologic pathways involving
genetic abnormalities in the host such as alterations of cell adherence factors like E-cadherin [40,42].
However, increasing epidemiological data have been also associating H. pylori infection with sporadic
diffuse-type gastric cancers likely through carcinogenic pathways that are independent from gastric
mucosa atrophy [44–49]. Several pathways probably exploited by the H. pylori to induce SRCC-like
abnormalities in gastric epithelial cells have been reviewed recently [42]. Consequently, the etiological
role of H. pylori in both intestinal-type and sporadic diffuse-type gastric cancer is currently plausible.
We attempted to explore the genomic attributes of strain KE21 in light with different pathways able to
trigger carcinogenic development and H. pylori-related pathogenesis in general.

Overall, the metric characteristics of the genome of strain KE21 were consistent with genomic
features (e.g., size, structure, gene content) usually reported in non-African isolates [50]. This genome
included a mobilome comprising no prophage or plasmid but two genomic islands (GEIs)
inserted within regions previously identified as the “transposon, plasticity zone” (TnPZ) and the
“dg-region” [23,24]. GEIs are syntenic blocks of genes acquired horizontally and that likely contribute
to the diversification and adaptation of microorganisms, thus having a significant impact on the
genome plasticity and evolution [51]. A close analysis of the KE21 TnPZ assigned its structure to
the type 1b and identified an integrating conjugative element type four secretion system of type
4 (ICEHptfs4) commonly occurring in H. pylori species [23,24]. TnPZs and ICEHptfs(s) are highly
conserved in H. pylori while displaying great allelic diversity. Excluding mosaic and remnant forms,
TnPZ have been structurally categorized based on their gene arrangement in three types: 1, 1b, and 2;
while ICEHptfs(s) have been grouped into two types with related subgroups: ICEHptfs3 and ICEHptfs4
(i.e., ICEHptfs4a, 4b, and 4c) [23,24]. Interestingly, the ICEHptfs4 identified in strain KE21 could not be
assigned to any of the known subtypes, suggesting being a new ICEHptfs4 allele. The T4SSs contained
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in ICEHptfs(s) have been shown to contribute to bacterial virulence through both epidemiological
and in vitro infection model studies [52]. However, further studies are still needed to completely
elucidate the structure and function of these ICEHptfs(s)/T4SSs as well as their possible interactions
with other bacterial virulence factors [52]. In contrast, the content of the dg-region, delimited by the
dapB and glr genes, has been extensively explored [25]. Depending on the strain, the dg-region may
carry a 40-kb DNA segment known as the cag PAI region which generally consists of 26 or 27 genes
encoding a special syringe-like structure T4SS and the oncoprotein CagA, two major virulence factors
in H. pylori species [53]. The cag PAI region is thought to have been introduced into the H. pylori
genome via horizontal transfer from an unknown source. This island has been show as being prone
to functional disruption due to various genetic rearrangements occurring within and outside the
constituent genes [25,54]. The intactness or rearrangement of the cag-PAI has therefore been thought to
be crucial for the progression of gastroduodenal pathology due to H. pylori [25,55]. Notably, we found
that the dg-region of strain KE21 comprises an intact type-A cag PAI region, encoding a complete T4SS
with a CagA oncoprotein and whose rearrangement is compatible with a biological functionality.

Among the various virulence factors of H. pylori, the oncoprotein CagA plays a central role
as a scaffolding protein in the development of gastric cancer [54,56,57]. The CagA is a cellular
effector whose injection into host cells by the cag PAI T4SS deregulates an impressive number
of molecular signaling processes including carcinogenic pathways [54]. Some of these pathways
involve the binding of the non-phosphorylated CagA to E-cadherin that ultimately trans-activates
the β-catenin-dependent genes while inducing also mutational alterations (e.g., TP53) as well as
aberrant DNA hypermethylation and inactivation of the CDH1 gene associated with the progression
of sporadic diffuse-type gastric cancers [58–62]. Otherwise, the translocated CagA may also undergo
a phosphorylation by host cell kinases at a conserved tyrosine residue found within the EPIYA
(Glu-Pro-Ile-Tyr-Ala) motif. This allows binding the phosphorylated CagA to a SH2-domain-containing
protein tyrosine phosphatase (SHP2), and thus deregulates the phosphatase activity of SHP2, a crucial
step in the development of H. pylori-related intestinal-type gastric cancer [54,56,63]. The structure
of the CagA oncoprotein is crucial for the virulence of H. pylori and leads to pathogenic differences.
We observed that the KE21 strain comprises in its N-terminal CagA, a cluster of conserved basic
residues, known as the basic patch or K-Xn-X/RXR motif, that plays an important role in the interaction
of CagA with phosphatidylserine required for the biological activity of cagA [28]. In addition, the CagA
C-terminal tail of KE21 is characterized by the presence of three EPIYA (Glu-ProIle-Tyr-Ala) motifs,
which serve physiologically as motifs for tyrosine phosphorylation of T4SS-delivered CagA by host
cell kinases such as Src-family kinases (SFKs) and c-Abl [56]. Based on the sequences flanking each
of the EPIYA motifs, we concluded that the KE21 CagA was of ABC type which is termed Western
CagA, as it was identified first in Western countries, in contrast to the East Asian CagA of ABD
type [57]. The Western type CagA ABC is known to be competent for tyrosine phosphorylation and
able to even undergo a sequence amplification of EPIYA-C motifs to more efficiently bind to SHP-2 for
increased carcinogenicity [54,57]. Furthermore, the C-terminal tail of the strain KE21 CagA contains
another repeatable sequence motif, originally designated as the CagA multimerization sequence
motif (CM) comprising 16 amino-acid residues and located immediately distal or proximal to the last
repeat of the EPIYA segments [57,64]. Whereas the CM motif sequence is highly conserved, there are
several variants previously described in East Asian (CME type, FPLRRSAAVNDLSKVG), Western
(CMW type, FPLKRHDKVDDLSKVG), and Amerindian H. pylori species (CMAmI and CMAmII types,
SSLKRHAKVDDLSKVG and YTLKMHAGDDNLRSKVG) [65–67]. Aberrant pro-oncogenic signals
elicited by deregulated SHP2 via the EPIYA motif, together with destruction of the gastric epithelium
caused by CM-mediated PAR1 inhibition are two major pathophysiological processes that cooperatively
contribute to H. pylori CagA-induced gastric oncogenesis [57]. Remarkably, we observed that the KE21
CM motifs—i.e., FPLKRHDKVEDLSKVG and FPLKRRSAKVEDLSKVG—are different from the motifs
described previously in non-African populations. However, while the KE21-CagA contains two motifs
as in Western type CagA, its most distal motif is very similar to East Asian type (with only two amino
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acid differences) which binds the most strongly to PAR1 with enhanced biological effect [57]. Given
these similarities with CME and CMW types, pending further studies, we hypothesize that the KE21 CM
motif is biologically functional in contrast to Amerindian CM variants (i.e., CMAmI and CMAmII) that
had been shown as abrogating the ability of CagA to interact with PAR1 and substantially attenuating
the CagA oncogenicity [65,66]. Further analyses exploiting an in vitro infection model using the AGS
epithelial cells line, indirectly attested the competence of KE21-related T4SS for translocate a bioactive
CagA oncoprotein [26,27]. Hence, H. pylori KE21 demonstrated ability to promote the production of the
proinflammatory cytokine IL-8 from gastric epithelial cells which represent hallmarks of cag PAI/T4SS
function [54,56]. Moreover, showed the capacity to produce morphological changes of gastric epithelial
cells, referred to as “hummingbird phenotype” of AGS cells, which reflect CagA-induced carcinogenic
signaling pathways resulting in cytoskeletal rearrangement, cellular motility, and elongated shape
of host cells [54,56]. We noted also that the strain KE21 genome encodes a full-length gene for the
high temperature requirement A (HtrA) protein. Ubiquitously, H. pylori expresses HtrA, a protein
with dual function acting as a chaperone and a serine protease, which cleaves-off the ectodomain of
E-cadherin and disrupts intercellular adhesions opening up the intercellular space for transmigration
of bacteria [68]. Consequently, HtrA-dependent E-cadherin shedding strongly enhances CagA delivery
into infected host cells via integrin β1 essential for gastric cancer development [69]. Furthermore, strain
KE21 was also found with a full-length gene for the VacA, a key and ubiquitous toxin for pathogenesis
in H. pylori species [30]. The VacA toxin is known for its multitude of effects on epithelial cells, varying
from endosomal alterations of intraluminal pH and disruption of endocytic compartment trafficking,
induction of autophagy and enhancement of mitochondrial dysfunction, which can result either from
its pore-forming ability or through the activation of pro-apoptotic factors [38,39]. Four main regions
of diversity in VacA sequences have been recognized, namely the signal sequence region (s)-region,
the intermediate region (i)-region, the deletion (d)-region, and middle region (m)-region [37–39]. These
result in VacA alleles containing multiple combinations of s-, i-, d-, and m-region types [37,39]. Being of
the s1i1d1m1 allele, the KE21 VacA is thus a variant that has been reported with enhanced vacuolating
activity, and linked to a potentially higher relative risk for development of gastric cancer or peptic
ulcer disease [39].

Hence, the analysis of cagPAI/CagA, HtrA, and VacA clearly raises the potential for strain KE21 to
cause tissue damage and to trigger carcinogenic pathways in epithelial cells. To explore further the
full virulence potential of strain KE21, we screened the genome for the presence of genes encoding
other factors that are critical in different steps of H. pylori colonization and pathogenesis. We thus
observed that strain KE21 encodes a cluster of all seven urease genes (i.e., ureA/B, ureI, and ureE-H)
whose activity is required for adjusting the periplasmic pH as an acid acclimation mechanism to resist
and survive in the harsh acidic environment of the stomach [34]. The isolate is also equipped with
several genes encoding flagella components (e.g., flgE, flaA, and flaB) and lipopolysaccharides (e.g., rfaJ,
rfaC) mediating bacterial motility and immune modulation enabling colonization and persistence
in the stomach [35,36]. The bacterial attachment to the epithelial cells, as an important step of the
infection, is mediated by an impressive number of adhesins and OMPs in H. pylori species [32].
We identified more than 50 genes encoding putative OMPs including main proteins that have been
formally implicated in the pathogenesis of H. pylori infection, e.g., BabA (HopS), OipA (HopH), HopQ
(Omp27), HomA, AlpA (HopC), AlpB (HopB), SabB (HopO) and SabA (HopP) [32,33]. However,
few putative virulence factors including BabC (HopU), BabB (HopT), IceA, and DupA were not
detected in the KE21 genome. BabA, the best characterized of the adhesin proteins in H. pylori,
mediates binding to host cells’ fucosylated Lewis b (Le(b)) blood group antigens and was encoded
in two copies likely granting strain KE21 interesting potentials for host-bacterium interactions [70].
OipA may serve as an adhesin altering the host immune response but also promotes inflammation
was predicted to be preserved in switched “ON” phenotype in strain KE21, suggesting preservation
of functions [71]. The HopQ outer-membrane adhesin of H. pylori exhibits a high level of genetic
diversity, and two families of HopQ alleles have been described (type I HopQ and type II HopQ) [72].
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The strain KE21 displays HopQ gene encoding type I allele which has been documented to be present
in cag PAI positive H. pylori strains and is epidemiologically associated with gastric cancer [73,74].
This protein was recently shown to bind carcinoembryonic antigen-related cell adhesion molecules
(CEACAMs) including CEACAM1, an inhibitory receptor expressed mainly by activated T and NK
cells and involved in cancer development and progression [73,75,76].

To cope with the need to attest the African origin of the strain, we performed phylogenetic analyses
that assigned the isolate to hpAfrica1, a major genetic population of H. pylori species that is native to
Africa [19,20]. H. pylori species is split into distinct bacterial populations exhibiting tight relationships
with ethno-geographical distribution and history of human host [3,77]. Of these populations, three are
originating from Africa (hpNEAfrica, hpAfrica1 and hpAfrica2), one from Europe (hpEurope), and three
from Asia (hpEAsia, hpAsia2 and hpSahul) [3,77–79]. Our results suggest strongly that strain KE21 was
probably not imported from outside Africa. Nevertheless, reporting on a single isolate which may not
be representative of all the strains circulating in the Kenyan population constitutes the main limitation
of this study. Furthermore, the experimental analyses used in this study constitute a model which only
partially reflects conditions in vivo. In vivo studies, using for example animal models, would have
further strengthened the validity of our observations. Obviously, further studies are needed to enhance
our observation and to fully understand the epidemiological threat and the clinical implications that
would result from isolates displaying similar biological properties as strain KE21 that probably are
spreading in the study population.

4. Conclusions

Our results highlight substantial virulence potentials displayed by typical African H. pylori isolate,
including the ability to deregulate carcinogenic pathways in epithelial cells via translocation of a
functional CagA oncogene protein. It would therefore be more interesting to assess at the population
level, the epidemiological distribution of strains with the similar biological characteristics and which
could represent a significant risk of developing gastric cancer in African populations. This will facilitate
a better understanding of the risk of gastric cancer in Africa and will contribute to the elucidation of
the so-called African Enigma, which still refers, according to Agha A. et al. [14], to an epidemiological
situation warranting further clarification. The message in this report does not establish strain KE21 as
the cause of the SRCC diagnosed in our patient, but it is more a call for increased surveillance efforts
and enhanced research, including genomic explorations, regarding H. pylori isolates circulating in
Africa and related gastric cancer risk.

5. Materials and Methods

5.1. Patient and Biological Sampling

H. pylori KE21 was obtained from the gastric mucosa of a Kenyan female patient who underwent
gastro-duodenal endoscopy at Aga Khan University Hospital, Nairobi. This strain was isolated
through culture of two gastric biopsy specimens sampled from the gastric antrum and corpus of
the patient. The culture process was performed by homogenizing the gastric biopsy specimen and
inoculating on Brucella agar (BD Difco, USA) supplemented with 7% sheep blood. The culture plates
were incubated under microaerophilic conditions (10% CO2, 5% O2, and 85% N2) at 37 ◦C for up to
7 days. H. pylori-like colonies with translucent, convex morphology grew on the plates and were
identified based on biochemical properties (catalase, oxidase, and urease reactions) and microscopic
morphology following a Gram staining (Gram negative bacilli). Then, they were sub-cultured for
72 h before being stored at −80 ◦C in a Brucella broth medium containing glycerol, until shipped in
cold-chain to Oita University in Japan where the genomic sequencing was performed. In addition,
two biopsy specimens were sampled from the stomach, fixed in 10% buffered formalin, and embedded
in paraffin for histological examination by a clinical pathologist.
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5.2. Antimicrobial Susceptibility Testing

The antimicrobial susceptibility was assessed using the E-Test® (bioMérieux) method on culture
growth of H. pylori colonies isolated from gastric biopsy specimens following the Clinical and
Laboratory Standards Institute protocols (Wayne, PA, USA). H. pylori culture was suspended at a
turbidity equivalent to a 3.0 McFarland standard and inoculated onto Müeller–Hinton agar plates
supplemented with 7% sheep blood and antibiotics (AMX, CLA, LEVO, TET and MTZ). The MICs of
antibiotics were determined after 72 h of incubation. The H. pylori strain 26695 was used as a control
strain. Clinical breakpoints between resistant and susceptible strains were determined following the
guidelines of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) available at
http://www.eucast.org/.

5.3. DNA Extraction, Library Preparation, and Whole Genome Sequencing

Harvested confluent bacterial cultures expanded from a single colony of H. pylori KE21 isolate
were used for the extraction of total DNA by DNeasy Blood and Tissue kit (QIAGEN Inc., Valencia,
CA, USA).

5.3.1. Short-Read Illumina Sequencing

A library of 1 ng DNA was prepared for sequencing of 300-bp paired-end reads, using the Nextera
XT DNA Library Preparation kit (Illumina, San Diego, CA, USA). Whole-genome sequencing was
performed at 300 cycles using the Illumina Miseq platform (Illumina, Inc., San Diego, CA, USA)
following the Manufacturer’s instructions. Fluorescent images were assessed with the MiSeq Control
Software, and FASTQ-formatted sequence data were created with MiSeq Reporter Analysis Software.
The density cluster and Q-score ≥ 30 of sequenced reads reached 1206 k/mm3 and 88%, attesting the
good quality of sequencing runs.

5.3.2. Long-Read MinION Sequencing.

To produce long-read sequences of this strain, we applied 400 ng of genomic DNA on the
Oxford Nanopore MinION (Oxford Nanopore Technologies, Oxford, UK) device following the Rapid
Sequencing protocol (SQK-RAD004). Raw sequence reads were uploaded to the Epi2Me interface
(Metrichor, Oxford, UK) for base calling and demultiplexing of MinION data. Epi2Me was used also
for examining basic metrics of sequencing abundance and quality. Only base-called data passing
Epi2Me quality parameters (qmean > 6) were downloaded off the cloud in FAST5 and FASTQ formats to
use in further analyses. In total, 13,386 MinION reads were obtained with average length and quality
score of 6963 bp and 8.3, respectively.

5.4. Bioinformatic Analyses

Low-quality bases (the quality of bases < Q30) and adapters were trimmed using Trimmomatic
v0.30 [80]. Filtered High-throughput short reads were screened for the presence of known plasmids
using the PlasmidSeeker tool with 26695 (NC_000915.1) as the reference genome [81]. MinION long
reads were trimmed using Porechop v.0.2.4 (https://github.com/rrwick/Porechop), assembled along
with Illumina Miseq short reads in a hybrid genome assembly using Unicycler v.0.4.8 [82]. The draft
genome was polished by using Pilon v.1.23 [83]. The quality assessment of the obtained genome was
assessed using QUAST v5.0.2 [84]. The taxonomic assignment of the genome was performed using
the WIMP workflow of Epi2Me [17] and the FastANI [18] through the DFAST Quality Control tool
of DFAST v1.1.5 (https://dfast.nig.ac.jp/, Tokyo, Japan, 2020). Gene sequences were annotated with
Prokka v1.14.5 [85] and DFAST v1.1.5 (https://dfast.nig.ac.jp/). They were functionally characterized
and clustered in subsystems by the RASTtk pipeline of Rapid Annotation using Subsystem Technology
v2.0 [86].
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Additionally, 14 H. pylori genomes publicly available that had been previously well-characterized,
were used along with strain KE21 to infer the pan-genome and its core genome by using Roary v3.13.0
with an 80% BLASTp percentage identity cut-off [87]. The phylogenetic characterization of the strain
KE21 was estimated through a bootstrapped neighbor-joining tree estimated by Maximum Likelihood
method with MEGA v7 [88] based on the core genome alignment. MAUVE was used for comparing
the genome of KE21 with those of J99 and 26695, two reference isolates [50,81]. Nucleotide sequences
and inferred amino acid sequences were aligned with references and visually analyzed using CLC
genomic Workbench v8.5.1 and in MEGA v7. Maps of single genome and genomes alignment were
constructed using CGView Sever v1.0 [89]. ABRicate v1.0.1 (https://github.com/tseemann/abricate)
was applied to construct the virulome of H. pylori KE21 by detecting putative virulence factors in
silico through a BLAST+ against a reference database locally optimized for H. pylori species by
including additional species-specific virulence genes to the VFDB repository of bacterial virulence
factors from various pathogens (http://www.mgc.ac.cn/VFs/) [90]. The H. pylori virulome database
included 167 non-redundant genes retrieved from H. pylori J99 and 26695 isolates.

5.5. AGS Cell Line Co-Infection with H. pylori KE21

The virulence ability of H. pylori KE21 strain was further assessed experimentally by infecting
human gastric epithelial AGS cell lines as described previously [91]. The experiments were performed
twice independently in triplicate. Briefly, AGS cells were seeded into 6-well plates and grown overnight
in RPMI 1640 medium supplemented with 10% FBS. The plates were incubated at 37◦C for the indicated
periods of time in a humidified environment containing 5% CO2 and 95% air. K21 strain was harvested
from an agar dish and washed twice with PBS before being added to the AGS culture wells with a
bacterium-to-cell ratio of 50:1. After 24 h of co-culture, formation of the hummingbird phenotype
was examined microscopically in ten randomly chosen fields. Additionally, the functionality of the
cagPAI was assessed through measurement of the concentration of induced IL-8 in the supernatant of
AGS cells co-cultured with H. pylori by using the CXCL8/IL-8 ELISA Kit (R & D Systems, Minneapolis,
MN, USA).

5.6. Nucleotide Sequence Accession Number

The genome sequenced of H. pylori KE21 was deposited at the DNA Data Bank of Japan (DDBJ)
under the accession number AP023320.

5.7. Ethical Consideration

The patient KE21 gave informed consent for the conduct of this study, in accordance with
the Declaration of Helsinki. The study was approved by the Institutional Ethics Committee of the
Aga Khan University Hospital (Ref N#: 2017/REC-97(vl)), the Kenyatta University Ethical Review
Committee (Ref N# PKU/509/1602-PKU/447/E39), and the Oita University Ethical Review Committee
(Ref N#: 1660).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/9/556/s1,
Figure S1: N-terminal sequence alignment of genes encoding the Outer inflammatory protein A (OipA) of H. pylori
KE21 and reference strains, Figure S2: Molecular Phylogenetic analysis of genes encoding the Helicobacter
outer membrane protein Q (HopQ) of KE21 and reference strains by Maximum Likelihood method, Table S1:
Summary statistics of the pan-genome between H. pylori strains KE21, J99, and 26695, Table S2: The pan-genome
of orthologous genes formed by KE21, J99, and 26695 strains, Table S3: Baseline characteristics of genomes used in
this study, Table S4: Characterization of the transposon plasticity zone (TnPZ) and the integrating conjugative
element (ICEHptfs) identified in H. pylori KE21, Table S5: Predicted dg-region and cag pathogenicity island (cagPAI)
in H. pylori KE21, Table S6: The virulome of H. pylori KE21.
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