Posttraumatic stress disorder associated with unexpected death of a loved one: Cross-national findings from the world mental health surveys

Lukoye Atwoli
Aga Khan University, lukoye.atwoli@aku.edu

Dan J. Stein
University of Cape Town

Andrew King
Harvard University

Maria Petukhova
Harvard University

Sergio Aguilar-Gaxiola
Center for Reducing Health Disparities, UC Davis Health System, Sacramento, CA, USA

See next page for additional authors

Follow this and additional works at: https://ecommons.aku.edu/eastafrica_fhs_mc_intern_med

Part of the Psychiatry and Psychology Commons

Recommended Citation

Available at: https://ecommons.aku.edu/eastafrica_fhs_mc_intern_med/190
Authors
Lukoje Atwoli, Dan J. Stein, Andrew King, Maria Petukhova, Sergio Aguilar-Gaxiola, Jordi Alonso, Evelyn J. Bromet, Giovanni de Girolamo, Koen Demyttenaere, and Silvia Florescu
Posttraumatic stress disorder associated with unexpected death of a loved one: Cross-national findings from the world mental health surveys

Lukoye Atwoli1,2 | Dan J. Stein2 | Andrew King3 | Maria Petukhova3 | Sergio Aguilar-Gaxiola4 | Jordi Alonso5,6,7 | Evelyn J. Bromet8 | Giovanni de Girolamo9 | Koen Demyttenaere10 | Silvia Florescu11 | Josep Maria Haro12 | Elie G. Karam13,14,15 | Norito Kawakami16 | Sing Lee17 | Jean-Pierre Lepine18 | Fernando Navarro-Mateu19 | Siobhan O’Neill20 | Beth-Ellen Pennell21 | Marina Piazza22,23 | Jose Posada-Villa24 | Nancy A. Sampson3 | Margreet ten Have25 | Alan M. Zaslavsky3 | Ronald C. Kessler3 | on behalf of the WHO World Mental Health Survey Collaborators3

1Department of Mental Health, Moi University School of Medicine, Eldoret, Kenya
2Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, Republic of South Africa
3Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
4Center for Reducing Health Disparities, UC Davis Health System, Sacramento, CA, USA
5IMIM-Hospital del Mar Research Institute, Parc de Salut Mar, Barcelona, Spain
6Pompeu Fabra University (UPF), Barcelona, Spain
7CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
8Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY, USA
9IRCCS St. John of God Clinical Research Centre/IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
10Department of Psychiatry, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
11National School of Public Health, Management and Professional Development, Bucharest, Romania
12Parc Sanitari Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Barcelona, Spain
13Department of Psychiatry and Clinical Psychology, Faculty of Medicine, Balamand University, Beirut, Lebanon
14Department of Psychiatry and Clinical Psychology, St. George Hospital University Medical Center, Beirut, Lebanon
15Institute for Development Research Advocacy and Applied Care (IDRAAC), Beirut, Lebanon
16Department of Mental Health, School of Public Health, The University of Tokyo, Tokyo, Japan
17School of Psychology, University of Ulster, Londonderry, UK
18Hôpital Lariboisière Fernand Widal, Assistance Publique Hôpitaux de Paris INSERM UMR-S 1144, University Paris Descartes, Paris Diderot, France
19IMIB-Arrixaca, CIBERESP-Murcia, Subdirección General de Salud Mental y Asistencia Psiquiátrica, Servicio Murciano de Salud, El Palmar (Murcia), Murcia, Spain
20Trimbos-Instituut, Netherlands Institute of Mental Health and Addiction, Utrecht, The Netherlands
21Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
22Universidad Peruana Cayetano Heredia, Lima, Peru
23National Institute of Health, Lima, Peru
24Colegio Mayor de Cundinamarca University, Bogota, Colombia
25Department of Mental Health, School of Public Health, The University of Tokyo, Tokyo, Japan
1 | INTRODUCTION

Unexpected death of a loved one (UD) is the most commonly reported traumatic experience (TE) in community epidemiological surveys across the world (Benjet et al., 2016). It is also one of the TEs associated with the highest number of cases of posttraumatic stress disorder (PTSD) in country-specific community surveys (Atwoli et al., 2013; Breslau et al., 1998; Carmassi et al., 2014; Olaya et al., 2014) and is also associated with significantly elevated risk of first onset of other mental disorders (Keyes et al., 2014). Awareness that PTSD occurs in the wake of unexpected death is relatively recent (Zisook, Chentsova-Dutton, & Shuchter, 1998), though, and raises questions about the prevalence and correlates of PTSD associated with this experience. Few community epidemiological surveys have specifically addressed these questions. The WHO World Mental Health (WMH) surveys (Kessler & Ustun, 2008) provide a unique opportunity to do so by assessing prevalence and predictors of UD-related PTSD in general population samples across the globe. Here, we focus on prevalence and predictors of UD-related DSM-IV PTSD. The predictors considered are those found to be significant in previous studies of more general PTSD (DiGangi et al., 2013; Ferry et al., 2014) as well as those significant in previous studies of bereavement and complicated grief (Kristensen, Weisaeth, & Heir, 2012; Lobb et al., 2010), including respondent sociodemographics, characteristics of the death, respondent childhood adversities, history of prior TEs, and history of prior psychopathology.

Consistent with previous community epidemiological surveys of PTSD, WMH respondents were asked to complete a checklist of lifetime exposures to a wide variety of TEs. Given that some people are exposed to a large number of different TEs in their lifetime, it is impossible to assess PTSD separately for each of these occurrences. The standard approach to this problem is to ask each respondent to select the one or two lifetime TE occurrences they consider to be their “worst” (or the ones associated with the most psychological distress) and to assess PTSD after those events (Breslau et al., 1998). But that approach leads to upwardly biased estimates of conditional PTSD risk after TE exposure (Atwoli, Stein, Koenen, & McLaughlin, 2015). WMH addressed this problem by using probability sampling methods to select one lifetime occurrence of one TE for each respondent as that respondent’s “random TE,” obtaining information about the circumstances around that occurrence that could influence PTSD risk, and then retrospectively assessing symptoms of PTSD after that occurrence. We focus here on the random TEs involving UD and their associated UD-related PTSD.

2 | MATERIALS AND METHODS

2.1 | Samples

The WMH surveys are a coordinated set of community epidemiological surveys of the prevalence and correlates of common mental
<table>
<thead>
<tr>
<th>I. High-income countries</th>
<th>Percentage of PTSD<sup>b</sup></th>
<th>(95% CI)<sup>c</sup></th>
<th>Number with PTSD<sup>b</sup></th>
<th>Total Sample Size<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>6.8</td>
<td>(2.2–19.3)</td>
<td>6</td>
<td>74</td>
</tr>
<tr>
<td>France</td>
<td>2.7</td>
<td>(0.8–4.6)</td>
<td>14</td>
<td>107</td>
</tr>
<tr>
<td>Germany</td>
<td>8.1</td>
<td>(2.5–23.4)</td>
<td>7</td>
<td>73</td>
</tr>
<tr>
<td>Italy</td>
<td>5.3</td>
<td>(3.0–7.6)</td>
<td>12</td>
<td>104</td>
</tr>
<tr>
<td>Japan</td>
<td>1.4</td>
<td>(0.1–2.6)</td>
<td>8</td>
<td>114</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>3.8</td>
<td>(1.3–6.2)</td>
<td>8</td>
<td>82</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>12.6</td>
<td>(3.7–21.5)</td>
<td>27</td>
<td>139</td>
</tr>
<tr>
<td>Spain</td>
<td>4.1</td>
<td>(1.2–7.0)</td>
<td>18</td>
<td>172</td>
</tr>
<tr>
<td>Spain—Murcia</td>
<td>1.7</td>
<td>(0.5–5.4)</td>
<td>8</td>
<td>202</td>
</tr>
<tr>
<td>United States</td>
<td>4.5</td>
<td>(1.3–7.7)</td>
<td>50</td>
<td>516</td>
</tr>
<tr>
<td>Total</td>
<td>4.8</td>
<td>(3.3–6.2)</td>
<td>158</td>
<td>1,583</td>
</tr>
<tr>
<td>χ²<sub>9</sub></td>
<td></td>
<td></td>
<td></td>
<td>19.0*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Low- or middle-income countries</th>
<th>Percentage of PTSD<sup>b</sup></th>
<th>(95% CI)<sup>c</sup></th>
<th>Number with PTSD<sup>b</sup></th>
<th>Total Sample Size<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>7.1</td>
<td>(2.3–11.9)</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>13.8</td>
<td>(4.0–38.0)</td>
<td>15</td>
<td>72</td>
</tr>
<tr>
<td>Colombia</td>
<td>0.7</td>
<td>(0.1–4.4)</td>
<td>4</td>
<td>121</td>
</tr>
<tr>
<td>Colombia—Medellin</td>
<td>11.7</td>
<td>(4.0–29.5)</td>
<td>21</td>
<td>162</td>
</tr>
<tr>
<td>Lebanon</td>
<td>4.0</td>
<td>(1.3–11.6)</td>
<td>6</td>
<td>68</td>
</tr>
<tr>
<td>Peru</td>
<td>1.4</td>
<td>(0.3–3.1)</td>
<td>4</td>
<td>92</td>
</tr>
<tr>
<td>Romania</td>
<td>3.3</td>
<td>(0.9–7.8)</td>
<td>6</td>
<td>92</td>
</tr>
<tr>
<td>South Africa</td>
<td>3.3</td>
<td>(0.2–6.4)</td>
<td>8</td>
<td>374</td>
</tr>
<tr>
<td>Ukraine</td>
<td>10.4</td>
<td>(3.1–17.7)</td>
<td>20</td>
<td>164</td>
</tr>
<tr>
<td>Total</td>
<td>5.9</td>
<td>(3.3–8.4)</td>
<td>94</td>
<td>1,230</td>
</tr>
<tr>
<td>χ²<sub>8</sub></td>
<td></td>
<td></td>
<td></td>
<td>15.3</td>
</tr>
</tbody>
</table>

| **III. Total** | | | | 2,813 |

| Overall between country difference **χ²₁₈** | 35.4* |
| High versus low or middle difference **χ²₁** | 0.6 |

^aSignificant at the .05 level, two-sided test.

^bEach respondent who reported lifetime exposure to one or more traumatic events (TEs) had one occurrence of one such experience selected at random for detailed assessment. Each of these randomly selected TEs was weighted by the inverse of its probability of selection at the respondent level to create a weighted sample of TEs that was representative of all TEs in the population. The randomly selected “deaths of a loved one” were the subset of these randomly selected TEs involving “death of a loved one.” The sum of weights of the randomly selected “deaths of a loved one” was standardized within surveys to sum to the observed number of respondents whose randomly selected TE was “death of a loved one.” The n reported in the last column of this table represents that number of respondents. The results reported here are for the surveys where at least one respondent with a randomly selected “death of a loved one” met DSM-IV/CIDI criteria for PTSD related to that TE. Two surveys were excluded for the following reasons: Mexico for low frequency of outcome (n = 94) and Israel for having no respondents experiencing “death of a loved one” as a TE (n = 0).

^cThe reported sample sizes are unweighted. The unweighted proportions of respondents with PTSD do not match the prevalence estimates in the first column because the latter were based on weighted data.

^dConfidence intervals that include 0.0% as the lower bound were estimated using the Wilson-score method (Reed, 2007). This method was used for the following countries: Belgium, Germany, Spain—Murcia, Bulgaria, Colombia, Colombia—Medellin, Lebanon, Peru, and Romania.

^eThe Wilson interval method (Reed, 2007) was used to calculate confidence intervals when the lower bound of 1.96 times the standard error was less than 0.0.

Disorders carried out in nationally or regionally representative household samples in countries throughout the world (Kessler & Ustun, 2008). The data reported here come from the subset of 19 WMH surveys that used an expanded PTSD assessment to determine PTSD prevalence associated with random TEs as defined above (Table 1). These surveys included 10 in high-income countries and 9 in countries classified as low- or middle-income countries. Each survey was based on a probability sample of household residents in the target population using a multistage clustered area probability sample design. Total sample size across surveys was 78,023, although we focus here on the 2,813 respondents with UD selected as their random TEs. A more complete description of WMH sampling procedures is available elsewhere (Heeringa et al., 2008).
2.2 | Field procedures

After obtaining informed consent, interviews were administered face-to-face in respondent homes in compliance with the Declaration of Helsinki and with approval from local IRBs. The interview schedule was developed in English and translated into other languages using a standardized WHO protocol (Harkness et al., 2008). Bilingual survey supervisors in participating countries were trained and supervised by centralized WMH field staff and interviewers were monitored using procedures described elsewhere (Pennell et al., 2008) to guarantee cross-national consistency in data quality.

2.3 | Measures

2.3.1 | Traumatic experiences

Respondents were asked about lifetime exposure to each of 27 different types of TEs and two open-ended questions about exposure to “any other” TE and to a private TE the respondent did not want to name. Positive responses were probed for number of lifetime occurrences of each TE type and age at exposure to the first occurrence of each TE type. In the case of the random TEs, we also included questions about age of exposure and the context surrounding the TE (see below for UD). As noted above, the random TE for each respondent was selected using a probability sampling scheme from the full list of all lifetime TE types and occurrences reported by the respondent.

2.3.2 | Unexpected death of a loved one (UD)

Reports of unexpected deaths were elicited by asking “Did someone very close to you ever die unexpectedly; for example, they were killed in an auto accident, murdered, committed suicide, or had a fatal heart attack at an early age?” In cases where a UD was the random TE, the respondent’s age at the time of the UD was recorded along with responses to five questions about the experience: the respondent’s relationship to the deceased (spouse, parent, child, sibling, other relative, or nonrelative), the cause of death (homicide, suicide, accident/medical error, or illness), length of illness if the death was due to illness, the age of the deceased at the time of death, and the respondent’s perception of whether they could have prevented the death assessed as a yes–no answer to the question: “Looking back on it now, is there any way you could have prevented the death from happening?”

2.3.3 | PTSD

DSM-IV mental disorders were assessed with the Composite International Diagnostic Interview (CIDI; Kessler & Ustun, 2004). As detailed elsewhere (Haro et al., 2006), blinded clinical reappraisal interviews with the Structured Clinical Interview for DSM-IV (SCID) found CIDI–SCID concordance for PTSD to be moderate (area under the curve [AUC] = .69; Landis & Koch, 1977). Sensitivity and specificity were .38 and .99, respectively, resulting in a likelihood ratio positive (LR+) of 42.0, which is well above the threshold of 10 typically used to consider a screening scale diagnosis definitive (Gardner & Altman, 2000). Consistent with the high LR+, the proportion of CIDI cases confirmed by the SCID was 86.1%, suggesting that the vast majority of CIDI/DSM-IV PTSD cases would independently be judged to have DSM-IV PTSD by a trained clinician.

2.3.4 | Other mental disorders

The CIDI also assessed 14 prior (to respondent’s age of exposure to the random TE) lifetime DSM-IV mental disorders. These included mood disorders, anxiety disorders, disruptive behavior disorders, and substance disorders. Age-of-onset (AOO) of each disorder was assessed using special probing techniques shown experimentally to improve recall accuracy (Knäuper, Cannell, Schwarz, Bruce, & Kessler, 1999). This allowed us to determine based on retrospective AOO reports whether each respondent had a history of each disorder prior to the age of occurrence of the random TE. DSM-IV organic exclusion rules and diagnostic hierarchy rules were used (other than for oppositional defiant disorder, which was defined with or without conduct disorder, and substance abuse, which was defined with or without dependence). Agoraphobia was combined with panic disorder because of low prevalence. Dysthymic disorder was combined with major depressive disorder for the same reason.

2.3.5 | Other PTSD predictors

We examined six classes of predictors. The first two were described above: characteristics of the death and the respondent’s history of prior mental disorders. The third class was sociodemographics: age, education, and marital status (each as of the time of the death), and sex. Age was coded in quartiles. Given the wide variation in education levels across countries, education was classified as low, low-average, high-average, or high (coded as a continuous 1–4 score) according to within-country norms (Scott et al., 2014). The next three classes of predictors assessed the respondent’s history of exposure to stressful experiences prior to the random UD: previous experience of UD, exposure to each of the other 28 lifetime TEs, and exposure to each of 12 childhood family adversities (CAs). Consistent with prior WMH research on CAs (Kessler et al., 2010), we distinguished between CAs in a highly correlated set of seven that we labeled Maladaptive Family Functioning CAs (parental mental disorder, parental substance abuse, parental criminality, family violence, physical abuse, sexual abuse, neglect) and other CAs (parental divorce, parental death, other parental loss, serious physical illness, family economic adversity).

2.4 | Analysis methods

In addition to the sample weight, each respondent reporting a TE was weighted by the inverse of the probability of selection of the random TE occurrence. For example, a respondent who reported three TE types and two occurrences of the randomly selected type would receive a TE weight of 6.0 for the selected random TE. The product of the sample weight with the TE weight was used in analyses of the random TEs, yielding a sample that is representative of all
lifetime TEs occurring to all respondents. The sum of the consolidated weights across respondents with a randomly selected UD was standardized in each survey for purposes of pooled cross-national analysis to equal the observed number of respondents with this TE in the sample.

Prevalence of PTSD associated with randomly selected UDs was estimated using cross-tabulations. Logistic regression was then used to examine predictors of PTSD pooled across surveys. Predictors were entered in blocks, beginning with sociodemographics, followed sequentially by characteristics of the death, prior TE and CA exposure, and prior mental disorders. All models included dummy control variables for surveys, meaning that the reported coefficients represent pooled within-survey coefficients. Logistic regression coefficients and standard errors were exponentiated and are reported as odds ratios (ORs) with 95% confidence intervals (CIs), with statistical significance evaluated using .05-level two-sided tests.

The design-based Taylor series method (Wolter, 1985) implemented in the SAS software system (SAS Institute, Inc., 2008) was used to adjust for the weighting and clustering of observations. Design-based F tests were used to evaluate significance of each block of predictor, with numerator degrees of freedom equal to number of predictors and denominator degrees of freedom equal to number of graphically clustered sampling error calculation units containing random UDs across surveys (n = 1,062) minus the sum of primary sample units from which these sampling error calculation units were selected (n = 569) and one less than the number of variables in the predictor set (Reed, 2007), resulting in 493 denominator degrees of freedom in evaluating bivariate associations and fewer in evaluating multivariate associations.

Once the final model was estimated, a predicted probability of PTSD was generated for each respondent from model coefficients. A receiver operating characteristic (ROC) curve was then calculated from this summary predicted probability (Zou, O’Malley, & Mauri, 2007). Area under the ROC curve (AUC) was calculated to quantify overall prediction accuracy of the model (Hanley & McNeil, 1983). We also evaluated concentration of risk of PTSD among the 5% of respondents with highest predicted risk of PTSD based on the final model, which we defined as the proportion of all observed cases of PTSD that was found among the 5% of respondents with highest predicted risk. Concentration of risk was calculated using cross-tabulations. Logistic regression coefficients and standard errors were exponentiated and are reported as odds ratios (ORs) with 95% confidence intervals (CIs), with statistical significance evaluated using .05-level two-sided tests.

The design-based Taylor series method implemented in the SAS software system was used to adjust for the weighting and clustering of observations. Design-based F tests were used to evaluate significance of each block of predictor, with numerator degrees of freedom equal to number of predictors and denominator degrees of freedom equal to number of graphically clustered sampling error calculation units containing random UDs across surveys (n = 1,062) minus the sum of primary sample units from which these sampling error calculation units were selected (n = 569) and one less than the number of variables in the predictor set (Reed, 2007), resulting in 493 denominator degrees of freedom in evaluating bivariate associations and fewer in evaluating multivariate associations.

3 | RESULTS

3.1 | Prevalence of UD and association with PTSD

Prevalence of UD was 30.2% (2,813 respondents) across surveys (interquartile range [IQR]: 24.4–33.0%), with an average 1.6 lifetime occurrences per respondent with any and representing 16.4% of all TEs in the population (IQR 15.3–17.5% across surveys). (Detailed results are available upon request.) PTSD prevalence associated with random UDs averaged 5.2% across surveys and was comparable in high-income versus low-income/middle-income countries (4.8 vs. 5.9%; χ² = 0.6, P = .45; Table 1). However, prevalence differed significantly across all surveys (χ² = 35.4, P = .010) and among surveys in high-income countries (χ² = 19.0, P = .030), but not among surveys in low-income/middle-income countries (χ² = 15.3, P = .06).

3.2 | Predictors of PTSD associated with UD

Respondents who were in the oldest age quartile (35+) at the time they experienced the UD had significantly elevated univariate PTSD odds compared to those in the youngest quartile (ages 1–17; OR 2.5; 95% CI: 1.1–5.9; Table 2). PTSD was also significantly more common among women than men (OR 3.0; 95% CI: 1.5–6.0) and among the currently married (OR 2.1; 95% CI: 1.3–3.6) and previously married (OR 3.2; 95% CI: 1.3–7.7) than the never married in univariate models, but was not significantly associated with respondent education.

3.2.1 | Model 1

However, sex was the only sociodemographic that remained significant in a multivariate model that included all the sociodemographics (Table 2, Model 1). We subsequently elaborated that model to include a methodological control for number of years between respondent age at the time of unexpected death and age at interview to investigate the possibility of time-related recall bias, but that association was non-significant (OR 1.1; 95% CI: 0.9–1.3).

3.2.2 | Model 2

The respondent’s relationship to the deceased was a significant predictor of PTSD (F₃,₄₉₀ = 12.6, P < .001) in the model that added characteristics of the death to the sociodemographic predictors (Table 2, Model 2), with highest odds of PTSD associated with death of the respondent’s spouse (OR 9.6; 95% CI 4.1–22.3) or son or daughter (OR 8.7; 95% CI: 4.2–18.0) followed by death of any other child (OR 4.2; 95% CI: 1.7–10.2) and of the respondent’s parent (OR 2.2; 95% CI: 1.1–4.4) compared to others. Cause of death was not a significant predictor (F₃,₄₉₁ = 0.8, P = .49). The respondent’s perception that he/she could have done something to prevent the death was also a significant predictor (OR 2.8; 95% CI 1.2–6.6).

3.2.3 | Model 3

Preliminary analysis found that prior lifetime exposure to TEs predicted PTSD significantly, but that this association was mainly due to
TABLE 2 Associations of Sociodemographics, Trauma Characteristics, and Prior Stressors with PTSD after Randomly Selected Unexpected Death of a Loved One (UD; n = 2,813)a

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Univariate Model</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>(95% CI)</td>
<td>OR</td>
<td>(95% CI)</td>
<td>OR</td>
<td>(95% CI)</td>
</tr>
</tbody>
</table>

I. Sociodemographics at time of traumatic event

| Respondent age at TE exposure (vs. 1–17 years) | 2.5* (1.1–5.9) | 1.7 (0.5–6.2) | 1.2 (0.4–3.9) | 1.6 (0.5–5.3) | 0.9 (0.2–3.1) |

| Lower middle age (25–34) | 1.4 (0.5–3.8) | 1.1 (0.3–3.9) | 1.1 (0.4–3.3) | 1.2 (0.4–3.7) | 0.7 (0.2–2.3) |

| Young adult (18–24) | 0.7 (0.3–1.9) | 0.7 (0.2–2.1) | 0.8 (0.3–2.1) | 0.9 (0.3–2.5) | 0.6 (0.2–1.5) |

| F\textsubscript{3,491} | 5.1* (4.0–6.3) | 1.5 | 0.4 | 0.7 | 0.5 |

| Female gender (vs. male) | 3.0* (1.5–6.0) | 2.7* (1.3–5.6) | 2.1* (1.0–4.3) | 1.9* (1.1–3.5) | 2.2* (1.2–3.9) |

| Education | 1.0 (0.7–1.3) | 1.0 (0.7–1.5) | 1.0 (0.7–1.4) | 1.0 (0.7–1.3) | 1.0 (0.8–1.4) |

| Marital history (vs. never married) | 2.1* (1.3–3.6) | 1.4 (0.6–3.1) | 1.1 (0.5–2.4) | 1.0 (0.5–2.5) | 1.5 (0.6–3.9) |

| Previously married | 3.2* (1.3–7.7) | 1.7 (0.5–5.4) | 2.2 (0.6–7.5) | 1.7 (0.5–5.2) | 0.8 (0.5–6.2) |

| F\textsubscript{3,492} | 5.3* (4.0–6.3) | 1.5 | 0.4 | 0.7 | 0.5 |

II. Trauma characteristics

| Who died (vs. other relative or nonfamily member) | 12.3* (5.6–27.0) | – | – | 9.6* (4.1–22.3) | 10.3* (4.5–23.6) | 13.0* (5.3–31.9) |

| Spouse | 12.1* (5.8–25.3) | – | – | 8.7* (4.2–18.0) | 11.7* (4.4–36.7) | 15.1* (7.2–31.5) |

| Son or daughter | 5.9* (1.5–22.2) | – | – | 4.2* (1.7–10.2) | 3.1* (1.4–6.7) | 2.0* (1.1–3.9) |

| Some other child (0–12 years old) | 2.3* (1.2–4.3) | – | – | 2.2* (1.1–4.4) | 2.5* (1.3–4.9) | 3.3* (1.7–6.6) |

| Parent | 15.7* (4.7–66.4) | – | – | 12.6* (3.9–41.8) | 17.1* (5.7–33.3) | 15.4* (5.4–47.8) |

| Cause of death (vs. illness or other) | 0.7 (0.2–2.6) | – | – | 1.3 (0.5–3.5) | 1.7 (0.6–4.5) | 2.1 (0.8–5.4) |

| Homicide | 0.4 (0.1–1.3) | – | – | 0.5 (0.2–1.4) | 0.5 (0.2–1.4) | 0.4 (0.1–1.5) |

| Suicide | 0.7 (0.4–1.3) | – | – | 1.0 (0.6–1.8) | 1.1 (0.6–2.0) | 1.4 (0.7–2.5) |

| Accident, natural disaster, or medical mishap | 0.9 (0.6–1.4) | – | – | 0.8 (0.5–1.4) | 1.0 (0.6–1.6) | 1.4 (0.7–2.5) |

| F\textsubscript{3,491} | 5.9* (4.0–6.3) | – | 0.8 | 0.5 | 0.9 |

III. Perceived preventability

| R could have prevented death | 3.4* (1.2–10.2) | – | – | 2.8* (1.2–6.6) | 1.9 (0.7–4.9) | 1.5 (0.5–4.0) |

IV. Prior vulnerability factors

| Prior stresses | 2.5* (1.4–4.5) | – | – | – | 2.6* (1.2–5.9) | 1.7 (1.0–3.1) |

| Maladaptive family functioning CAs (0–2)| 3.5* (2.2–5.6) | – | – | – | 2.8* (1.7–4.8) | 2.2* (1.3–3.8) |

| Prior mental disorders (0–8) | 1.8* (1.5–2.2) | – | – | – | – | 1.8* (1.5–2.3) |

| F\textsubscript{3,497}, (15,479), (17,477), (18,476) | 5.6* (4.0–6.3) | – | – | 7.6* (4.0–6.3) | 11.4* (4.0–6.3) | 11.1* (4.0–6.3) |

aSignificant at the .05 level, two-sided test.

bModels were based on weighted data. See the text for details. Each model included dummy variable controls for WMH survey.

cNumber of prior traumatic events (values = 0–3) was calculated as the sum of four individual prior TEs (beaten by caregiver, beaten by someone else, witnessed physical fight at home, and man-made disaster) from Supporting Information Table S4.

dNumber of Maladaptive Family Functioning Childhood Adversities (MFF CAs; values = 0–2) was calculated as the sum of three significant individual MFF CAs (parental mental, parental substance misuse, and sexual abuse) from Supporting Information Table S5.

eNumber of mental disorders was calculated as the weighted sum of ADHD, drug abuse/dependence, and alcohol abuse/dependence from Supporting Information Table S6.

fDesign-based F tests were used to evaluate significance of predictor sets, with numerator degrees of freedom equal to number of predictors and denominator degrees of freedom equal to number of geographically clustered sampling error calculation units containing randomly selected deaths of a loved one across surveys (n = 1,062) minus the sum of primary sample units from which these sampling error calculation units were selected (n = 569) and one less than the number of variables in the predictor set (Reed, 2007), resulting in 493 denominator degrees of freedom in evaluating bivariate associations and fewer in evaluating multivariate associations.

TEs involving interpersonal violence or man-made disasters (detailed results are available on request), which were found to be significantly intercorrelated in an exploratory factor analysis reported elsewhere (Benjet et al., 2016). Multivariate analysis showed that those reporting these TEs had significantly increased odds of PTSD after the UD (OR 2.6; 95% CI: 1.2–5.9 per TE in the range 0–3; Table 2, Model 3). Preliminary analysis also showed that Maladaptive Family Functioning CAs predicted PTSD related to unexpected death (detailed results are
available on request), while further analysis showed that these gross associations were due to three particular CAs—parental mental illness, parental alcohol abuse, sexual abuse (OR 2.8; 95% CI 1.7–4.8 per TE in the range 0–2). The respondent’s perception that he/she could have done something to prevent the death was nonsignificant in Model 3.

3.2.4 Model 4

Preliminary analysis showed that each of the 14 temporally primary lifetime DSM-IV/CIDI disorders assessed in the surveys had an elevated OR (10 of them significant at the .05 level) when considered one at a time, but that few remained significant in a multivariate model due to high comorbidity among the disorders. Further analysis (Table 2, Model 4) then showed that the most parsimonious characterization of these joint associations was provided by a composite variable that summed the number of anxiety disorders (0–3+), Attention Deficit Hyperactivity Disorder (ADHD), and number of substance disorders (0–2; OR 1.8; 95% CI 1.5–2.3 per disorder in the range 0–8).

3.3 Strength and consistency of overall model predictions

Estimated AUC based on 20 replicates of 10-fold cross-validated predictions (as described in the Methods) was .80 in the total sample and .74–.86 in subsamples defined by respondent sex, age, and education (Fig. 1). The 5% of respondents with highest predicted risk included 30.6% of all cases of UD-related PTSD. This is six times the proportion expected by chance (Table 3). Subgroup values of this concentration of risk ranged from 36.8% among those with high/high-average education to 14.7% among men. Positive predictive value among the 5% of respondents with highest predicted risk was 25.3% in the total sample and ranged from 36.6% among respondents from lower-middle-income countries to 18.2% among respondents from high-income countries.

4 DISCUSSION

The study has a number of limitations. First, although prospective evidence suggests that retrospective reports of TEs are valid (Dohrenwend et al., 2006), respondents with PTSD may have been biased toward higher recall of prior lifetime TE exposures or mental disorders (Roemer, Litz, Orsillo, Ehlich, & Friedman, 1998; Zoellner, Foa, Brigid, & Przeworski, 2000). Second, PTSD might have led to respondent perceptions that they could have done something to prevent the death, inducing the significant positive association between that “predictor” and PTSD. Third, diagnoses were based on a fully structured lay-administered interview rather than a semi-structured clinical interview. Although the WMH clinical appraisal data are reassuring (Haro et al., 2006), only a small number of countries carried out clinical reappraisal studies, potentially limiting generalizability. Fourth, although the combined sample size of the WMH surveys is large, the number of respondents selected for in-depth UD assessment was relatively small, reducing statistical power to carry out subtle analyses. In particular, with only 252 respondents meeting criteria for PTSD and 20 predictors, the resulting 12.6 events per variable (EPV) ratio, while well above the 10.0 EPV recommended to avoid biased estimates in an additive model (Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996), did not allow us to consider interactions of trauma characteristics with preexisting vulnerabilities or other interactions. Fifth, the WMH interview schedule was developed before DSM-5 criteria for persistent complex bereavement disorder (PCBD; American Psychiatric Association, 2013) were codified. As a result, no information was obtained in the surveys on PCBD or other complicated grief syndromes (Cozza et al., 2016), making it impossible for us to evaluate the extent to which our results would be changed if they were adjusted for comorbidity or confounding of our PTSD diagnoses with these syndromes (Maercker & Znoj, 2010).

Despite these limitations, the present study makes several significant contributions to knowledge on the sequelae of UD. First, no previous cross-national study has reported on the prevalence of PTSD after UD. We found this to average 5.2%, which is somewhat higher than the 4.0% mean prevalence for any randomly selected TE across the WMH surveys (Kessler et al., 2014), although the prevalence of UD-related PTSD varied widely across surveys. It is unclear why this variation exists, but the higher mean prevalence than for other TEs emphasizes the public health importance of UD-related PTSD (Atwoli et al., 2013; Breslau et al., 1998; Carmassi et al., 2014; Ferry et al., 2014; Kawakami, Tsuchiya, Umeda, Koenen, & Kessler, 2014; Keyes et al., 2014; Olaya et al., 2014).

Second, we found a number of significant predictors of UD-related PTSD. Although the literature on predictors of UD-related PTSD is sparse, our results are consistent with evidence about the predictors of PTSD after other types of TEs (Brewin, Andrews, & Valentine, 2000; DiGangi et al., 2013; Ferry et al., 2014; Ozer, Best, Lipsey, & Weiss, 2003), and the findings about relationship with the deceased, earlier lifetime traumatic events, and history of mental disorders are consistent with prior studies of complicated grief, including work on bereavement symptoms after loss of a spouse or child (Kristensen et al., 2012; Lobb et al., 2010). Overlap of predictors of UD-related PTSD with the predictors found in studies of complicated grief highlights important commonalities, supports inclusion in the same chapter of the psychiatric nosology (Maercker & Znoj, 2010), but again raises concerns about our lack of knowledge about how our results would have changed if data had been available in the WMH surveys to distinguish UD-related PTSD from PCBD.

Third, the lack of association between cause of death and PTSD is relevant to a key debate about the DSM-5 diagnostic criteria for PTSD. Although DSM-IV (American Psychiatric Association, 2000) permitted unexpected death to qualify as a potentially traumatic event for PTSD, DSM-5 (American Psychiatric Association, 2013) developed a more stringent threshold for criterion A1, requiring that in cases of actual or threatened death of a family member or friend, the event(s) must have been directly witnessed, violent, or accidental. The WMH interview did not enquire about the respondent witnessing the death, making it impossible for us to know if the UD qualified as a DSM-5 TE. However, PTSD symptoms can occur after nonviolent/nonwitnessed death (Zisook et al., 1998) and this narrowing of the definition of qualifying
death in DSM-5 has been questioned (Friedman, 2013; Keyes et al., 2014; Larsen & Pacella, 2016). It is relevant to this debate that our analysis found that specific manner of death of a loved one has little impact on the risk of subsequent DSM-IV PTSD. This is true, furthermore, even though some of the deaths reported were not “unexpected” in the sense that they were reportedly due to physical illnesses of some duration, although the exact time of death might have been unexpected (e.g., a relative known to have only a relatively short time to live but seemingly in stable condition suddenly dropping dead at a holiday dinner).

Perhaps the most striking result in our study was that 30.6% of people who experienced UD-related PTSD were among the 5% of
UD is a highly prevalent TE associated with a somewhat higher prevalence of PTSD than other TEs. Predictors of UD-related PTSD appear to be consistent with other PTSD. Preliminary evidence suggests that UD-related PTSD could be predicted with good accuracy from data available shortly after the death, although this evidence is based on retrospective data and needs to be confirmed prospectively. These findings emphasize that UD is a major public health issue and suggest that screening assessments might be useful in identifying high-risk individuals for early interventions.

ACKNOWLEDGMENTS

The World Health Organization World Mental Health Survey collaborators are Tomasz Adamowski, Ph.D., M.D., Sergio Aguilar-Gaxiola, M.D., Ph.D., Ali Al-Hamzawi, M.D., Mohammad Al-Kaisy, M.D., Abdullah Al-Sabiea, M.B.B.S., FRCP. Jordi Alonso, M.D., Ph.D., Yasmin Atwanji, M.S., Ph.D., Laura Helena Andrade, M.D., Ph.D., Lukoye Atwoli, M.D., Ph.D., Randy P. Auferbach, Ph.D., William G. Axinn, Ph.D., Corina Benjet, Ph.D., Guillerme Borges, Sc.D., Robert M. Bossarte, Ph.D., Evelyn J. Bremot, Ph.D., Ronny Bruffaerts, Ph.D., Brendan Bunting, Ph.D., Ernesto Caffo, M.D., Jose Miguel Caldas de Almeida, M.D., Ph.D., Graca Cardoso, M.D., Ph.D., Alfredo H. Cia, M.D., Stephanie Chardoul, Somnath Chatterji, M.D., Alexandre Chiavegatto Filho, Ph.D., Pim Cuijpers, M.D., orlando, Dr. P Đàlmao, M.D., Rachel Germain, M.D., Ron de Graaf, M.S., Ph.D., Peter de Jonge, Ph.D., Koen Demyttenaere, M.D., Ph.D., David D. Ebert, Ph.D., Sara Evans-Lacko, Ph.D., John Fayyad, M.D., Fabian Fiestas, M.D., Ph.D., Silvia Florescu, M.D., Ph.D., Barbara Forresi, Ph.D., Sandro Galea, Dr.P.H., M.D., M.P.H., Laura Germaine, Ph.D., Stephen E. Gilman, Sc.D., Dirgha J. Ghiemire, Ph.D., Meyer D. Glantz, Ph.D., Oye Gureje, Ph.D., D.S., FRCPSych, Josep Maria Haro, M.D., M.P.H., Ph.D., Yanling He, M.D., Hristo Hinkov, M.D., Chi-yui Hu, Ph.D., Ph.D., Yueqin Huang, M.D., M.P.H., Ph.D., Aimee Nasser Karam, Ph.D., Elie G. Karam, M.D., Norito Kawakami, M.D., D.M.Sc., Ronald C. Kessler, Ph.D., Andrejz Kiełna, M.D., Ph.D., Karestan C. Koenen, Ph.D., Viviane Kovess-Masfety, M.Sc., M.D., Ph.D., Carmen Lara, M.D., Ph.D., Sing Lee, Ph.D., Jean-Pierre Lepine, M.D., Itzhak Levav, M.D., Daphna Levinson, Ph.D., Zhaoru Liu, M.D., M.P.H., Silvia S. Martins, M.D., Ph.D., Herbert Matschinger, Ph.D., John J. McGrath, Ph.D., Katie A. McLaughlin, Ph.D., Maria Elena Medina-Mora, Ph.D., Zeina Mneimneh, Ph.D., M.P.H., Jacek Moskalewicz, Dr.P.H., Samuel D. Murphy, Dr.P.H., Fernando Navarro-Mateu, M.D., Ph.D., Matthew K. Nock, Ph.D., Siobhan O’Neill, Ph.D., Mark Oakley-Browne, M.B., Ch.B., Ph.D., J. Hans Omel, Ph.D., Ph.D., Beth-Elle Pennell, M.A., Marina Piazza, M.P.H., Sc.D., Stephanie Pinder-Amaker, Ph.D., Patryk Piotrowski, M.D., Ph.D., Jose Posada-Villa, M.D., Ayelet M. Ruscio, Ph.D., Kate M. Scott, Ph.D., Vicki Shihty, Ph.D., Tim Slade, Ph.D., Jordan W. Snow, Sc.D., M.D., Juan Carlos Stagnaro, M.D., Ph.D., Dan J. Stein, M.B.A., M.Sc., Ph.D., Amy E. Street, Ph.D., Hisateru Tachimori, Ph.D., Nezar Taib, M.S., Margreet ten Have, Ph.D., Graham Thornicroft, Ph.D., Yolanda Torres, M.P.H., Maria Carmen Viana, M.D., Ph.D., Gemma Vilagut, M.S., Elisabeth Wells, Ph.D., Harvey Whiteford, Ph.D., David R. Williams, M.P.H., Ph.D., Michelle A. Williams, Sc.D., Bogdan Wojtyniak, Sc.D., and Alan M. Zaslavsky, Ph.D.

CONFLICT OF INTEREST

Dr. Stein has received research grants and/or consultancy honoraria from Abbott, AstraZeneca, Eli-Lilly, GlaxoSmithKline, Jazz Pharmaceuticals, Johnson & Johnson, Lundbeck, Orion, Pfizer, Pharmacia, Roche, Servier, Solvay, Sunomito, Sun, Takeda, Tivkah, and Wyeth. Dr. Demyttenaere has served as a consultant with Servier, Lundbeck, Lundbeck Institute, AstraZeneca, and Naurex. In the past 3 years, Dr. Kessler received support for his epidemiological studies from Sanofi Aventis, was a consultant for Johnson & Johnson Wellness and Prevention, and served on an advisory board for the Johnson & Johnson Services, Inc. Lake Nona Life Project. Dr. Kessler is a coowner of DataStat, Inc., a market research firm that carries out healthcare research. The other authors report no biomedical financial interests or potential conflicts of interest relevant to this manuscript.

Grant sponsor

The World Health Organization (WHO) and the World Bank (WB) have supported the World Mental Health (WMH) Survey Initiative. Dr. Kessler is a consultant for Johnson & Johnson Wellness and Prevention, and served on an advisory board for the Johnson & Johnson Services, Inc. Lake Nona Life Project. Dr. Kessler is a coowner of DataStat, Inc., a market research firm that carries out healthcare research. The other authors report no biomedical financial interests or potential conflicts of interest relevant to this manuscript.
None of the funders had any role in the design, analysis, interpretation of results, or preparation of this paper. The views and opinions expressed in this report are those of the authors and should not be construed to represent the views of the sponsoring organizations, agencies, or governments.

A complete list of all within-country and cross-national WMH publications can be found at http://www.hcp.med.harvard.edu/wmh/.

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.