9-2016

Adem, diagnostic dilemma, a tertiary care hospital experience:

Rajesh Kumar
LNH Karachi

Hazim Brohi
LNH Karachi

Follow this and additional works at: http://ecommons.aku.edu/pjns

Part of the Neurology Commons

Recommended Citation
Available at: http://ecommons.aku.edu/pjns/vol11/iss3/8
ADEM, DIAGNOSTIC DILEMMA, A TERTIARY CARE HOSPITAL EXPERIENCE:

Rajesh Kumar¹, HazimBrohi², BushraRehan³, Syed Ijlal Ahmed⁴
¹Senior Registrar Neurology Department LNH Karachi
²Associate Professor Neurology Department LNH Karachi
³Assistant Professor Radiology Department LNH Karachi
⁴Medical Student LNNMC Karachi

Correspondence address: HazimBrohi (Associate Professor Neurology Department LNH Karachi); Email: hazimbrohi@yahoo.com
Date of submission: May 11, 2016 Date of revision: July 12, 2016 Date of acceptance: August 24, 2016

ABSTRACT

Acute disseminated encephalomyelitis (ADEM) is an uncommon inflammatory demyelinating disease of the central nervous system that usually occurs following a viral infection or vaccination, bacterial or parasitic infection, or even spontaneously. ADEM is a monophasic, poly symptomatic disorder but it may present with various combinations of motor, sensory, visual and cognitive symptoms. Some case reports of ADEM presented as psychiatric disorders primarily as confusion psychosis and at times dissociative disorder. At times, the diagnosis becomes a dilemma due to multifaceted picture. Due to confusion physician may go to extreme range of tests with no specific conclusion. Debates regarding exact diagnosis have always been there. Reports regarding ADEM are lacking from our country. The aim of our study is to look for the presenting features of the disease and the path to final diagnosis.

Keywords: ADEM, Demyelinating disease, diagnostic dilemma.

INTRODUCTION

Acute disseminated encephalomyelitis (ADEM) is an uncommon inflammatory demyelinating disease of the central nervous system that usually occurs following a viral infection but may appear following vaccination, bacterial or parasitic infection, or even spontaneously. The incidence rate is about 8 per 1,000,000 people per year. It occurs in all ages; most reported cases are in children and adolescent, with the average age five to eight years. ADEM is a monophasic, polysymptomatic disorder. It may present with various combinations of motor, sensory, visual and cognitive symptoms. Some case reports of ADEM presented as psychiatric disorders primarily as confusion, psychosis, at times dissociative disorder. At times the diagnosis becomes a dilemma due to multifaceted picture so the diagnosis of ADEM should be considered to prevent unnecessary investigations. The aim of our study was to look for the presenting features, onset, course and radiological features of patients presented with ADEM. Reports regarding ADEM is lacking in our country. We could identify only two papers on ADEM from Pakistani journal during literature search on internet. The two papers were about children.

METHODS

Our study was descriptive cross sectional study conducted at the department of neurology of Liaquat National Hospital, Karachi. We reviewed all adult patients who were finally labeled as ADEM from Jan 2014 to Dec 2014. Inclusion criteria were that the disease had to be monophasic, polysymptomatic neurological feature at onset and the imagining findings should correlate with demyelinating features. CSF should be negative for infections. The patients not fulfilling the above criteria were excluded from the study.

RESULTS:

In our study out of 12 patients labeled ADEM, eight patients full filled the clinical and radiological features of ADEM. Details are described in Table No: 01.
Table No: 1

<table>
<thead>
<tr>
<th>Case No</th>
<th>Age/sex</th>
<th>Prodromal fever</th>
<th>Clinical</th>
<th>CSF Findings</th>
<th>Imaging Findings</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>18years/ Female</td>
<td>Headache for one week</td>
<td>Fits headache - 1 week, weakness of all 4 limbs</td>
<td>Protein 67mg/dl WBCs 5</td>
<td>Cortical swelling with oedema in bilateral frontoparietal regions, few of above lesions showed minimal enhancing on contrast</td>
<td>Three session of Plasma-pharesis and Steroids</td>
<td>Improved</td>
</tr>
<tr>
<td>(2)</td>
<td>19years/ Male</td>
<td>Fever 10 days</td>
<td>Paraplegia, urinary retention 5 days, Unresponsiveness 1 day</td>
<td>Protein 93mg/dl, WBCs 43, 90% lymphocytes</td>
<td>Multiple bilateral high signal areas in periventricular and subcortical white matter in frontoparietal, temporoparietal region and in thalamic region showing no contrast enhancement</td>
<td>Steroids</td>
<td>Improved</td>
</tr>
<tr>
<td>(3)</td>
<td>20years/ Female</td>
<td>--------------</td>
<td>Lower limb weakness for 3 months, Difficulty in speaking 8 days and fits for 1 day</td>
<td>Normal</td>
<td>Abnormal high signal in cortical and subcortical areas of bilateral frontotemporal and parietal region showing patchy enhancement</td>
<td>ATT and Steroids</td>
<td>Improved</td>
</tr>
<tr>
<td>(4)</td>
<td>38years/ Male</td>
<td>Fever for 25 days</td>
<td>Fits for 10 days and unresponsiveness for 2 days</td>
<td>Protein 261mg/dl, WBCs 5</td>
<td>Abnormal signal in cortical and subcortical areas with cortical swelling bilateral in frontoparietal and temporal region with patchy contrast enhancement</td>
<td>Steroids and Antiepileptics</td>
<td>Improved</td>
</tr>
<tr>
<td>(5)</td>
<td>30years/ Male</td>
<td>Fever for 3 days</td>
<td>Confusion followed by unconsciousness</td>
<td>Proteins 86mg/dl WBCs 350 Mono 90%</td>
<td>High signals in bilateral frontoparietal, temporal white matter, centrum semiovale. Also high signals in thalami, midbrain, pons and both cerebellar hemisphere</td>
<td>Steroids</td>
<td>Expired</td>
</tr>
<tr>
<td>(6)</td>
<td>11years/ Female</td>
<td>Fever for 3 days</td>
<td>Difficulty in walking 2 days, Drowsiness for 1 day</td>
<td>WBC 75 (90% mono) Protein 66mg/dl</td>
<td>High signal seen in bilateral caudate and lentiform nuclei, also high signal with cortical swelling seen in bilateral frontoparietal and temporal region</td>
<td>Steroids (initially acyclovir, ceftriaxone and vancomycin for few days)</td>
<td>Improved</td>
</tr>
<tr>
<td>(7)</td>
<td>26years/</td>
<td>Unable to walk 5</td>
<td></td>
<td>WBC 20 Mono</td>
<td>Patchy areas of high signal intensity seen asymmetrically in bilateral</td>
<td>Steroids</td>
<td>Improved</td>
</tr>
</tbody>
</table>
DISCUSSION:

Two key elements, multifocal neurological presentation, and MRI imaging studies suggestive of demyelinating features are the key to identification of ADEM. As no verified clinical diagnostic criteria exist for ADEM12 the diagnosis majorly relies on clinical suspicion. Typically acute disseminated encephalomyelitis (ADEM) is a condition that predominantly affects the white matter of the brain and spinal cord. It is an immune-mediated inflammatory demyelinating disease. It occurs in the wake of a clearly identifiable febrile prodromal illness or immunization. It manifests as monophasic, acute-onset encephalopathy of varied degrees with multifocal neurologic deficits. It has good response to steroids and is self-limiting.13, 14, 15 Other acute demyelinating syndromes (ADS), especially multiple sclerosis (MS) bears a strong resemblance to ADEM both pathologically and clinically. However ADEM is not easily distinguishable from alternative diagnoses on the basis of clinical features and neuroimaging findings. We now discuss the differences between the two diseases and review our cohort in the light of these differences. The most important and diagnostic tools is MRI studies. Classically the demyelinating lesion is identified by their margins, distribution in white matter and sparing of grey matter and basal ganglia. Certain studies have reported certain imaging differences. The lesions in MS have well defined margins, lesion sites are characteristic (periaqueductal, corpus callosum and periventricular) as compare to ADEM where lesions have poorly defined margins, tend to be in deep white matter with periventricular sparing. In spinal cord ADEM lesions tend to be large swollen and thoracic, while MS lesions tend to be smaller, discreet, and cervical. One most striking feature of ADEM is involvement of cortical and deep /basal ganglia grey matter.16 In our study the key element that led to diagnosis of ADEM were the above described features. The scan showed involvement of both cortical and sub cortical regions, basal ganglia involvement. (for details see fig: 01-05) As both the disease (MS vs ADEM) share a common pathological background i.e. demyelination, there are instances where an illness initially diagnosed as ADEM is ultimately MS.17 We cannot comment that how many patients developed into MS as we do not have long term follow up. Other conditions that occur as part of disease spectrum of ADEM like bilateral optic neuritis, transverse myelitis, and neuromyelitis optica may also occur as early manifestations of either MS.18 Debate has always existed regarding the clinical picture. Most important is the time of onset clinical signs. However the general understanding is that the sign and symptoms of MS are usually isolated (monosymptomatic) as compare to ADEM which tends to be polysymptomatic at the onset of presentation. This was true for all of our patients. The most striking presentation seen is that of rapid onset encephalopathy (45-75% in ADEM compare to MS which is 13-15%)16. In fact according to the diagnostic criteria used by International pediatric multiple sclerosis study group, encephalopathy is one of must diagnostic criteria.18 While comparing the literature and our cohort of patients, 5 of our patients were encephalopathic i.e. 62% of patients, which is within the literature range (45—75%). All of our patients did not had encephalopathy. Usually the disease occurs after apromidal illness but it may be absent in quarter of patients.19 Five of our patients had prodromal fever while the rest did have any prodromal illness. The clinical course is rapidly progressive and typically develops over hours to maximum deficits within days (mean of 4.5 days). A minority of cases show continued deterioration of function for a period as long as four weeks.19 Controversy exists regarding the duration of monophasic period. Some may label the prolong phase as recurrent versus multiphasic ADEM. According to Mikaeloff it may extend up to 3.6 years20 and according to the international pediatric MS study group ADEM is labeled as multiphasic if symptoms recur at least three month after the onset of initial ADEM attack and at least after one month of completing steroid therapy.21, 22 Disease course can be longer in ADEM as seen in literature particularly in adults compare to children.23 This was true in Two of our patients case no 03 and 07, who had longer course
Fig:01 MRI brain of case No:04: Abnormal signal in cortical and subcortical areas with cortical swelling bilateral in frontoparietal and temporal region with patchy contrast enhancement.

Fig:02 MRI brain of case no: 02 Multiple bilateral high signal areas in periventricular and subcortical white matter in frontoparietal, temporoccipital region and in thalamic region showing no contrast enhancement.

Fig:03 MRI Brain of case no:01 Cortical swelling with oedema in bilateral frontoparietal regions, few of above lesions showed minimal enhancing on contrast.

Fig:04 MRI brain of case no 03 Abnormal high signal in cortical and subcortical areas of bilateral frontotemporal and parietal region showing patchy enhancement.

Fig:05 MRI brain and cervical spine of case no: 08 High signal seen in genu, body and splenium of corpus callosum, centrum semiovale and parietal periventricular region. High signal intensity extending from c2/c3 level to ConusMedullaris.
of ongoing features of 3 months and 5 months respectively. Convulsive seizures occur around the onset of ADEM in as many as 35% of cases. 19 Three of our patients had fits which is 37% (3 out of 8) approximately. Both of these disorders can have optic neuritis but it is usually unilateral in MS16. ADEM can be fulminant particularly in those having rapid onset of disease with extensive brain stem involvement and large lesion extending white matter and infratentorial11 with mortality 20% 24. Two of our patients, Case No: 5 and 8 died due to fulminant disease. CSF findings of ADEM are not strongly infective. It may be consistent of lymphocytic pleocytosis and high protein level. The CSF protein is higher in ADEM compared to MS while oligoclonal band is less commonly seen in ADEM compared to MS. In almost our entire patient had raised CSF protein only one patient has normal CSF DR. Oligoclonal band was not done in our study. This is the limitation in our study. Due to mixed nature of the disease it becomes at times very difficult to label the initial event. Thus, the term clinically isolated syndrome of demyelinating disease (CIS) was coined. The literature shows that 30 to 70 percent of these events will progress to MS.25

CONCLUSION:

In conclusion, diagnosis of ADEM rests on combination of history, clinical examination, MRI findings and CSF studies. It is only a high index of suspicious that will help to reach the diagnosis.

REFERENCES:

Conflict of interest: Author declares no conflict of interest.
Funding disclosure: Nil

Author’s contribution:
Rajesh Kumar: Study concept and design, protocol writing, data collection, data analysis, manuscript writing, manuscript review
Hazim Brohi: Study concept and design, data collection, data analysis, manuscript writing, manuscript review
Bushra Rehan: Study concept and design, data analysis, manuscript writing, manuscript review
Syed Ijaz Ahmed: data analysis, manuscript writing, manuscript review

23. Ketelslegers IA et al, Disease course and outcome of acute disseminated encephalomyelitis is more severe in adults than in children. Multscle. 2011 Apr;17(4):441-8