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INTRODUCTION
Colorectal cancer (CRC) was once consid-
ered a rare disease in sub-Saharan Africa 
(SSA), but decades of globalisation has 
changed this narrative. Currently, CRC 

is the fifth most common cancer in SSA, 
and while CRC incidence and mortality 
are decreasing in some high-income coun-
tries, rates in SSA are on the rise.1 Because 
CRC develops from a benign precursor 
polyp over several years, early detection 
is critical to either prevent malignancy or 
detect it at an early stage when it is highly 
curable. Moreover, curative surgery has 
been shown to improve survival in a SSA 
setting.2 Unfortunately, more than 60% 
of patients in SSA present with stage 4 
CRC with a <1% 5 year survival rate.3–5 
In contrast, almost 40% of patients in the 
USA present with stage 1 CRC, resulting 
in a 5-year survival rate of 90%.6 7 Wide-
spread population-based CRC screening 
programmes and tools (eg, faecal immu-
nochemical test (FIT), colonoscopy) have 
improved early detection in high-income 
countries, but SSA-specific data, tools 
and screening programmes are currently 
lacking. There is an urgent need to 
develop more efficient approaches to 
CRC screening and early detection that 
do not rely heavily on trained healthcare 
personnel or specialised resources (eg, 
endoscopy, pathology), which are often 
scarce in low- and middle-income coun-
tries (LMICs).

Recent technological advances and 
developments in artificial intelligence (AI) 
and machine learning (ML) methods have 
the potential to transform global health, 
particularly for early detection and diag-
nosis of CRC in SSA. Researchers are 
collecting enormous volumes of data, and 
while data science applications are largely 
underdeveloped in Africa, many enabling 
factors are already in place. Developments 
in cloud computing, substantial invest-
ments in digitising health information, 
and robust mobile phone penetration 
have poised many places in SSA with the 

necessary basics to initiate meaningful AI/
ML applications.8 Businesses in SSA have 
already embraced technological change, 
leapfrogging high-income countries 
in the proliferation of mobile banking 
(eg, M-PESA - one of the first mobile 
banking system for those with limited 
access or no access to banks in Africa.).9 
Furthermore, intergovernmental agen-
cies have convened high-profile meetings 
discussing the development and democ-
ratisation of AI solutions to address 
specific global challenges.10 11 The United 
Nations has highlighted the centrality of 
AI to achieve its Sustainable Develop-
ment Goals.2 The National Institutes of 
Health in the United States has invested 
about US$74.5 million over 5 years to 
advance data science, catalyse innovation 
and spur health discoveries across Africa 
under its new Harnessing Data Science for 
Health Discovery and Innovation in Africa 
(DS-I Africa) programme.11 Given these 
resources and investments, the impact of 
AI/ML applications on healthcare in SSA 
is imminent.

Herein, we discuss how AI/ML tools 
could be leveraged to conduct population-
based surveillance and improve the early 
diagnosis and prognosis of CRC in SSA. 
We highlight limitations to the currently 
available CRC screening programmes and 
tools in the SSA setting and provide two 
examples of potential AI/ML approaches: 
(1) Multianalyte Assays with Algorithmic 
Analysis (MAAA) for population-based 
surveillance and early detection and (2) 
pattern recognition and computer vision 
algorithms to guide diagnostic recom-
mendations and prognosis. While CRC is 
the use case, we also discuss how current 
initiatives around data science capacity 
in Africa offer a platform to scale such 
AI-based solutions to other potential high 
impact areas such as maternal, newborn, 
and child health and the growing burden 
of non-communicable diseases (eg, other 
cancers, diabetes, cardiovascular disease) 
in Africa. Lastly, we highlight how these 
innovative solutions have the poten-
tial to impact health outcomes in high-
income countries through reciprocal 
innovation.12–15

LIMITATIONS TO CURRENT CRC 
SCREENING TOOLS IN SSA
Screening programmes and policies 
around CRC prevention and detection 
are lacking in SSA. Furthermore, data 
on disease aetiology and prevalence 
are sparse, leaving practitioners with a 
limited knowledge base on the disease 
in their communities and inadequate 
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access to evidence-based tools for 
screening and early detection. These 
limitations are understandable given 
the burden of infectious diseases that 
has historically afflicted SSA. However, 
as SSA experiences the epidemiolog-
ical shift from infectious diseases to 
non-communicable diseases, such as 
CRC, the aetiology of the disease and 
the solutions to address the emerging 
CRC epidemic require SSA-specific 
data and approaches. Extrapolation 
of cancer screening recommendations 
from high-income countries to SSA is 
often inappropriate due to differences 
in demographics, disease epidemiology 
and resources. For example, the average 
risk screening for CRC is typically 
recommended at age 50; however, the 
US Preventive Services Task Force, the 
American Cancer Society and the US 
Multisociety Task Force on Colorectal 
Cancer have recently recommended 
lowering it to 45 years.16–18 In SSA, 
estimates from available data indicate 
that 19%–38% of CRC diagnoses are 
in persons <40 years of age—a stark 
contrast to the 1%–7% reported in high-
income countries.19–21 The higher risk of 
the early development of CRC, coupled 
with the recent lowering in screening 
age, highlight the evolving epidemi-
ology of CRC in younger adults and 
the need to tailor screening approaches 
to capture this cohort, particularly in 
SSA. There is urgency to address this 
need given that Africa’s population is 
projected to double by 2050, reaching 
nearly 2.5 billion (23% of the global 

population) with more than half of its 
population <25 years of age.22

Currently, several modalities exist 
for CRC screening and early detec-
tion. Colonoscopy can be used for 
CRC detection and intervention (eg, 
polyp removal), but SSA has limited 
endoscopic services. Recent data from 
Mwachiro et al23 reported an overall 
endoscopy capacity in East Africa of 
1.2 endoscopists, 1.2 gastroscopes and 
0.9 colonoscopes per 100 000 people—
values 1% to 10% of that of resource-
rich countries. Non-invasive screening 
tests include faecal occult blood testing, 
FIT and stool-based DNA tests17 24; 
however, widespread adoption of stool-
based approaches remains suboptimal 
in both high-income countries as well as 
SSA.25–28 In addition, questions about 
the impact of high ambient tempera-
ture and endemic parasitic infection 
as well as the practicality and cost-
effectiveness of these approaches in 
SSA remain.29–31 Regardless, endoscopy 
is still needed for diagnosis and prog-
nosis. Thus, early detection strategies 
that target those at the highest risk 
benefit from these limited services are 
paramount. With growing investments 
in technologies (eg, electronic health 
records and cloud computing) in SSA, 
the existing and expanding infrastruc-
ture can be leveraged to employ novel 
AI/ML methods to develop and validate 
surveillance tools that identify popula-
tions at highest risk for CRC in a more 
individualised or precise manner, as 
described below.

AI AND ML APPROACHES
MAAA as a population-based 
surveillance and early detection tool
Laboratory studies, such as complete 
blood counts (CBC) and comprehensive 
metabolic panels (CMP), are standard 
diagnostic tests ordered by clinicians, 
even in LMICs. These tests often contain 
subtle diagnostic clues; however, interpre-
tation of laboratory studies is routinely 
subject to human error. Presymptom-
atic longitudinal CBC patterns may be 
imperceptible to clinicians but would be 
readily detectable by statistical algorithms 
or ‘prediction models,’ often referred to 
as Multianalyte Assays with Algorithmic 
Analysis (MAAA).32 Currently, proprietary 
MAAA exist that were built and validated 
in high-income countries; these MAAA 
use CBC and demographic data to identify 
patients at high risk of CRC.33–36 Similarly, 
we have developed a MAAA prediction 
model in a US cohort using longitudinal 
and single timepoint laboratory studies 
and patient characteristics (accepted to 
Digestive Disease Week 2022). Initially, we 
set out to develop and compare multiple 
MAAA to predict luminal GI tract cancers 
in a retrospective cohort of patients 
(n=1 48 158 with 1025 GI tract cancers) 
who had at least 2 CBCs within 2 years. 
Predictor variables included age, sex, race, 
body mass index, individual components 
of the CBC and the CMP. To incorporate 
longitudinal features, summary statistics 
were calculated for each subject’s partic-
ular part of the CBC (ie, maximum, 
minimum, slope and total variation). Data 
were split into 70% training and 30% 
validation sets for analysis. For the 3-year 
prediction of GI tract cancers, the longitu-
dinal random forest model performed the 
best with an area under the receiver oper-
ator curve (AUROC) of 0.750 (95% CI 
0.729 to 0.771) and Brier score of 0.116, 
compared with the longitudinal logistic 
regression with an AUROC of 0.735 (95% 
CI 0.713 to 0.757) and Brier score of 
0.205. The longitudinal logistic regression 
and random forest models outperformed 
the single timepoint logistic regression at 
3 years, with an AUROC of 0.683 (95% 
CI 0.665 to 0.701). These findings are 
limited in that the MAAA predicts GI tract 
cancer, not CRC specifically, although just 
over half of patients with GI tract cancers 
had CRC (53.5%, n=548/1025). To date, 
this approach has not been validated in 
a low resource setting or SSA, where 
demographics and disease aetiology may 
differ, and longitudinal laboratory studies 
may not be readily available. In addition, 
CBC and CMP baselines likely vary across 

Figure 1  Identification of colon cancer in a digital H&E-stained tissue section of colonic 
adenocarcinoma. (A) image of colon cancer from a digital slide. (B) a vector was created to identify 
only the malignant glands, and (C) an additional vector was created to recognise only the stroma. 
(D) Boolean logic was used to determine the malignant glands, and the stroma was subtracted 
out. This approach could assist pathologists in identifying small foci of invasive glands or small foci 
of tumour present in blood and lymphatic vessels, which might be otherwise overlooked. Figure 
copyright Hipp et al,50 licensed under CC-BY 2.0 (https://creativecommons.org/licenses/by/2.0/).
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genetically diverse populations and can be 
influenced by the prevalence of infectious 
and chronic conditions, including other 
malignancies and genetic conditions such 
as sickle-cell disease that have distinct 
prevalence in different populations. While 
these previous studies provide proof of 
concept for the development of MAAA 
for CRC screening in SSA, it would be 
essential to develop and compare models 
that incorporate longitudinal and cross-
sectional laboratory data to determine the 
performance and optimal specificity or 
sensitivity for the target populations.

CRC is particularly amenable to 
MAAA-guided early detection strate-
gies for multiple reasons. First, CRC is 
highly curable when diagnosed at an early 
stage.6 Second, CRC is highly vascular 
and can produce very subtle chronic 
occult blood loss, which could be detected 
before symptoms develop using data from 
routine longitudinal CBCs and CMP 

and ML-based methods.34 35 37 Indeed, 
patients in SSA tend to present with late-
stage CRC, being diagnosed after clinical 
presentation with symptoms.6 7 Third, 
MAAA can be tailored to the local needs. 
For example, positive predicted values 
and negative predicted values of MAAAs 
can be adjusted to maximise sensitivity 
or specificity based on target populations 
(eg, age groups), resource availability, or 
sequential testing approaches (eg, MAAA 
and then FIT). Similar work has been done 
in other settings where resources were 
limited, particularly during COVID-19, 
where FIT-based quantitative screening 
thresholds were used to direct patients 
for endoscopic services.38 39 Finally, 
the costs and resources required to the 
patient and healthcare facility/provider 
are significantly less since it uses routine 
labs collected in various clinical settings. 
This is particularly relevant given the 
significant improvements in laboratory 

medicine in Africa driven by efforts to 
combat HIV/AIDS. In addition to devel-
oping a competent workforce and inno-
vative quality improvement programmes 
that saw more than 1100 laboratories 
enrolled and 44 accredited to interna-
tional standards, several regional labora-
tory networks have also been established 
to support programme scale-up and 
disease surveillance.40 This infrastructure 
can support robust healthcare systems 
and combat emerging continental and 
global health threats, like CRC and other 
cancers. Although, despite available diag-
nostic testing, studies have shown that 
they are not optimally used in managing 
patient care, and tools to bridge the diag-
nostic–treatment divide are needed.41 42 
MAAAs offer one approach to help bridge 
this gap and can be coupled with simple 
paper-based tools (eg, nomograms) to 
more complex mobile app-based tools or 
lightweight, field-deployed (cloud-based) 
Laboratory Information Systems designed 
for use in LMICs.43 44 In addition to the 
use of MAAAs as a tool for CRC diag-
nosis, the approach could be adapted 
for the prediction of CRC prognosis and 
treatment outcomes as both the CBC and 
CMP profiles of patients have been asso-
ciated with disease stage, metastasis and 
treatment outcomes.45–47

AI-based algorithms in pathology for 
early diagnosis and prognosis
After screening, accurate and timely diag-
nosis is critical to identifying appropriate 
treatment plans in cancer management. 
While CRC is diagnosed via clinicopath-
ological assessment by a pathologist, the 
availability of such expertise and resources 
in SSA are minimal. A 2012 survey of 33 
African countries found that 31 (94%) 
had fewer than one pathologist for every 
500 000 people, and many had fewer 
than one pathologist for every 1 million 
people.48 These values are 10% in high-
income countries, like the USA, which 
had one pathologist for every 20 600 
people in 2010. In addition to the lack of 
trained pathologists, access to immuno-
histochemical (IHC) reagents required for 
accurate and definitive diagnosis remains 
a significant hurdle. Unlike in infectious 
diseases, H&E-stained slides do not often 
suffice to make a precise diagnosis. Thus, 
a lack of efficient and reliable pathology 
services leads to delays and inaccurate 
reporting of results, which contributes 
to patients receiving inappropriate treat-
ment. Patients may be prescribed medica-
tions that are expensive yet ineffective and 
sometimes even harmful in treating their 

Figure 2  Summary of analysis workflow for identifying histological determinants of malignant 
transformation and disease grade. Step 3 uses a support vector machine classifier, but any 
classifier can be used (eg, random forest). Figure copyright Powell et al,52 licensed under CC-BY 
2.0 (https://creativecommons.org/licenses/by/2.0/). BIC, Bayesian information criterion; OS, overall 
survival; SVM, support vector machine.
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cancer type. Recent advances in AI-based 
computer vision and pattern recognition 
algorithms that use routine H&E-stained 
whole slide imaging offer transformative 
tools well suited for early cancer diagnosis 
and prognosis in SSA.

Pattern recognition algorithms aim 
to detect abnormalities in cell and tissue 
samples faster, more accurately and more 
consistently. In clinical care, these tools 
can assist pathologists in diagnostic recom-
mendations by pre-screening an image and 
identifying potentially problematic areas, 
including subtle features that may not be 
readily apparent to the eye. For example, 
the VIPR (Vectorising spatially-Invariant 
Pattern Recognition) algorithm and soft-
ware is a fully operational application suite 
developed by the Data Visualisation Core 
of the National Institute of Diabetes and 
Digestive and Kidney Diseases’ Kidney 
Precision Medicine Project.49–51 VIPR uses 
semisupervised and unsupervised, pixel-
level classification of digital whole slide 
image content, which allows for extremely 
high-throughput analysis of entire libraries 
of whole slide imagery. VIPR differs from 
conventional pattern recognition soft-
ware by basing its core search on a series 
of concentric, pattern-matching rings 
rather than the more typical rectangular 
or square blocks. This approach takes 
advantage of the continuous symmetry 
of the rings, allowing for the recognition 
of features independent of rotation. By 
making use of massively parallel compu-
tational platforms to realise necessary 
speed and performance, VIPR performs 
direct integration of vectorised image 
data with other classes of patient data (eg, 
lab values, clinical phenotypic features, 

clinical course, outcomes), thus allowing 
for a more global assessment of health 
status and biological potential of any given 
malignancy. The pixel-level precision and 
consistency for whole slide image clas-
sification exceeds what is possible using 
subject matter expertise alone. Moreover, 
it has demonstrated high reproducibility 
across different fields of view of a single 
slide, different slides in the same case, and 
different cases entirely.49–51

The VIPR tool was initially developed to 
interrogate tissue from patients with acute 
kidney injury or chronic kidney disease 
to define disease subgroups and identify 
critical cells, pathways, and targets for 
novel therapies. It has since proved to be 
highly effective for cancer detection and 
classification in colon cancer (figure  1) 
as well as haematology, breast cancer and 
lymphoma.49–51 Because VIPR has been 
designed as a turn-key system for auto-
mated objective assessment of H&E slides 
for disease diagnosis, it is suitable for 
deployment in settings where pathologists 
alone can effectively incorporate the tool 
into clinical workflow, without the need 
for the immediate response from an image 
analysis expert. Once histologically distinct 
regions are identified or ‘prescreened,’ 
image analysis algorithms can then be used 
to mine individual regions and aggregate 
them to predict malignant transformation, 
as described below.

Following disease detection from histo-
pathology, disease grading and IHC clas-
sification is critical to classifying various 
subtypes of cancer and thus determining 
appropriate treatment. Another rapidly 
advancing area is the use of computer 
vision and deep learning to digitally 

phenotype histological slides to better 
understand treatment response and 
survival.52 These algorithms can comple-
ment the clinical interpretation of diseased 
tissue in which the underlying diagnosis 
has already been made. This approach was 
employed in an image analysis and data 
mining pipeline to identify histological 
features capable of differentiating between 
cancer and non-cancer lesions and the 
malignant transformation-potential in 
gliomas (figure  2).52 Using whole slide 
imaging data from the Cancer Genome 
Atlas and companion clinical data for these 
specimens, we assessed the prognostic 
relevance of these histological discrimi-
nants.53 54 Histopathology image-derived 
measurements, such as cell morphologies, 
spatial patterns of cellular organisation, in 
combination with a bag-of-words (BoW) 
approach53 55 was used to identify tissue 
subregions that have visually distinct prop-
erties (eg, nuclear morphology, patterns of 
spatial organisation) and were associated 
with time-to-malignant transformation. 
The BoW approach is akin to clustering 
image subregions (ie, patches) derived 
from the whole slide image of the tissue. 
Importantly, this dictionary achieved an 
AUROC (through cross-validation) of 0.76 
to discriminate surrogates of malignant 
transformation. While this approach was 
developed in glioma, it offers one poten-
tial strategy to incorporate image features 
derived from routine H&E-stained slides 
into prognostic, predictive models of 
other cancers, such as CRC. In addition 
to the above approach, deep learning algo-
rithms leveraging popular architectures, 
such as Reset, VGGNet, and Inception, 
are also being adopted in the context of 
cancer prognosis,56 57 providing a path to 
a ‘non-feature-engineering’ approach to 
image recognition and content mining. In 
tandem with recently developed methods 
around feature interpretability,58 these 
tools can be incorporated into clin-
ical workflows. It is worth noting that 
modern computer vision techniques aim 
to adjust for multiple biases in data acqui-
sition, image staining and related arte-
facts, contributing to the development 
and delivery of robust decision support 
algorithms.

Digital pathology lab systems and infra-
structure are becoming more obtainable 
in SSA. For example, the VIPR Software 
is open-source, and microscopes that are 
small and fully remote-operable, capable 
of high-resolution images have become 
more affordable. Also, while these tech-
nologies can be computationally expensive 
(ie, requiring graphical processing unit 
and storage for gigapixel histopathological 
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Figure 3  Examples of challenges and opportunities for leveraging AI-based approaches in sub-
Saharan Africa. AI, artificial intelligence; CAB, community advisory board; CBO, community-based 
organisation; NGO, non-governmental organisations.
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scans), the emergence of cloud computing 
in SSA can transform innovation and effi-
ciency around how data are used. Taken 
together, one could envision an analytical 
pipeline that couples operational pattern 
recognition tools with image analysis algo-
rithms for automated and democratised 
identification and prediction of CRC from 
routine H&E histology images that is scal-
able. The current development of data 
science collaboratives in Africa could also 
facilitate the adoption and deployment 
of these tools, as well as MAAA-guided 
models for early detection and diagnosis 
of CRC as outlined below.

FUTURE DIRECTIONS
In the era of value-based healthcare, AI/
ML provides opportunities to improve 

access to care, reduce wastage, optimise 
resource utilisation and provide a mech-
anism for quality assurance of healthcare 
regarding CRC screening, diagnosis and 
management. Funding agencies (govern-
ment, donors or commercial) are more 
likely to invest in a system whose outputs 
are easily measured and can be bench 
marked against available resources. This 
is particularly important in SSA were data 
driven management of healthcare delivery 
is still a challenge. Routine use of AI/ML 
tools and their dissemination remains rare 
in high-income countries, not to mention 
LMICs. Advances in model performance 
characteristics have accelerated, but 
despite performing well in silo using retro-
spective data in a research setting, predic-
tion models (ie, using logistic regression 

or AI/ML-based methods) rarely leave the 
exploratory domain for use in the clinical 
or community settings. The development 
and deployment of AI/ML-based tools in 
SSA require addressing existing limitations 
in computing infrastructures and a lack of 
local data needed to support the creation 
of effective models. However, solving 
these problems will not automatically 
lead to widespread adoption. If we do not 
directly address the challenges of dissem-
ination and adoption of these prediction 
models in a way that supports social 
justice and health equity, data science 
approaches will have minimal impact on 
the health of individuals and populations. 
The issues surrounding the development, 
deployment and adoption of AI/ML-based 
tools in LMICs, and SSA, have been exten-
sively described elsewhere.59–61 Examples 
of some of the challenges and opportuni-
ties for leveraging AI-based approaches in 
SSA are provided in figure 3.

To address these challenges and increase 
the capacity to use and develop data 
science approaches in health research and 
innovation in Africa, the National Insti-
tutes of Health (NIH) recently launched 
a new Common Fund Programme: 
Harnessing Data Science for Health 
Discovery and Innovation in Africa (DS-I 
Africa).11 DS-I Africa builds on prior 
investments by the NIH Common Fund 
and its partners in the Medical Education 
Partnership Initiatives and the Human 
Health and Heredity in Africa (H3Africa) 
consortium to form a unique continental 
ecosystem that could be transformative, 
leveraging existing expertise to develop 
data tools and applications that can be 
shared, adopted, and harmonised globally. 
Creating a robust network of partnerships 
across the African continent and in the 
USA, including numerous national health 
ministries, non-governmental organisa-
tions, corporations and other academic 
institutions, the DS-I consortium includes 
seven research hubs (all of which are led 
by African institutions), seven research 
training programmes, four projects 
focused on ethical, legal and social impli-
cations of data science, and an open data 
science platform and coordinating centre.

Figure  4 depicts the synergistic initia-
tives within the DS-I Africa Consortium 
and highlights one of the research hubs to 
demonstrate how the hub aims to function 
as a scalable and sustainable data science 
platform in Kenya and within the greater 
DS-I consortium. The exemplar hub, 
UtiliZing Health Information for Mean-
ingful Impact in East Africa Through 
Data Science (UZIMA-DS), will address 
three critical needs across the translational 

Figure 4  Depiction of the Harnessing Data Science for Health Discovery and Innovation in 
Africa (DS-I Africa) programme and exemplar research hub. (A) The four main initiatives are: 
(1) Research hubs will apply novel approaches to data analysis and artificial intelligence to 
address critical health issues in Africa. (2) Open data science platform and coordinating centre 
will provide a flexible, scalable platform for the DS-I Africa researchers to find and access data, 
select tools and workflows, and run analyses through collaborative workspaces. It will also deliver 
the organisational framework for the direction and management of the initiative’s common 
activities; (3) Research training programmes will create multi-tiered curricula to build skills in 
foundational health data science, with options ranging from master’s and doctoral degree tracks 
to postdoctoral training and faculty development; and (4) The ethical, legal and social implications 
(ELSI) projects will address data science issues that present challenges in Africa such as data 
privacy and ownership, cybersecurity and sensitivities concerning the use of geospatial information 
for research or public health surveillance. (B) Led by the Aga Khan University—East Africa, Kenya 
Medical Research Institute-Wellcome Trust Research Programme, and the University of Michigan, 
the research hub will implement two research projects around maternal, newborn and child health 
as well as mental health, which will be supported by three cores: Admin core, Data Management 
and Analysis Core (DMAC) and Dissemination and Sustainability Core (DSC). The Admin Core 
will lead the UZIMA-DS researchhub, fostering synergy and integration of all hub components 
and partnerships and facilitating participation in DS-I cross-consortium activities. The DMAC will 
employ FAIR (Findable, Accessible, Interoperable, Reusable) principles to support the hub’s data 
ecosystem through data governance, facilitating data analytics within the projects, and fostering 
data sharing and interoperability throughout the greater DS-I Africa consortium. The DSC will 
promote engagement with stakeholders to identify sustainable model dissemination pathways 
into target communities. Through multisectoral partnerships with government, healthcare and 
non-profit sectors, the core will: facilitate the development of best practices and policies with 
stakeholders using data-driven approaches to inform guidelines; and promote engagement with 
private sectors to explore sustainable commercialisation opportunities and pathways. UZIMA-DS, 
UtiliZing Health Information for Meaningful Impact in East Africa Through Data Science.
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spectrum of data science: (1) harmoni-
sation of multimodal data sources; (2) 
leveraging temporal patterns of data to 
identify trajectories through prediction 
modelling using AI/ML-based methods; 
and (3) engaging with key stakeholders to 
identify pathways for dissemination and 
sustainability of these models in target 
communities. While the initial health 
domains of UZIMA-DS address critical 
health issues in maternal, newborn and 
child health and mental health, the hub 
can serve as a model that can be scaled to 
other countries and health domains within 
the greater DS-I consortium.

Lastly, while global health research was 
traditionally characterised by a unidi-
rectional exchange of innovation and 
expertise from high-income countries to 
LMICs, it is now well-recognised that 
these collaborations have ‘reciprocal 
value’. Because necessity often drives 
innovation, health tools that have been 
researched, developed, and implemented 
in LMICs can be adapted and adopted 
to address similar challenges in the USA 
and other high-income countries through 
‘reverse innovation’.13–15 While empir-
ically this is a nascent field, some early 
successes have been highlighted in areas 
such as antiretroviral treatment for HIV, 
cognitive impairment in older adults and 
mental health.62–65 Given the growing 
investments in data science infrastructure, 
the demonstrated openness to embracing 
technological change (ie, mobile banking 
proliferation), and the urgent need to 
develop more efficient approaches to 
cancer screening and early detection that 
do not rely heavily on trained healthcare 
personnel or specialised resources (eg, 
endoscopy, pathology), SSA is well poised 
to drive innovative AI-based solutions 
to augment the utilisation of specialised 
resources across the globe.

SUMMARY
With the growing resources and invest-
ments in AI/ML-based tools in SSA, one 
could envision a CRC surveillance and 
diagnosis pipeline that employs MAAA 
for population-based surveillance and 
pattern recognition and computer vision 
algorithms to guide diagnostic recommen-
dations and prognosis. These tools will 
need to be tailored to local needs based on 
available resources and testing approaches 
(eg, sequential testing with MAAA and 
then FIT) and key stakeholders will 
need to engage in the codesign of wide-
spread implementation strategies (eg, 
community-based screening programmes, 
practitioner education, health policies). 

Future studies are required to compare 
the efficacy of these tools to existing CRC 
surveillance and diagnosis tools (eg, FIT) 
in SSA populations. Furthermore, these 
innovative solutions provide opportuni-
ties for the adaption and adoption of these 
approaches in high-income countries. 
While CRC was used as the use case, these 
tools could be expanded to other preva-
lent and emergent cancers (eg, liver, breast 
and cervical) or other non-communicable 
diseases that would benefit from lab-based 
MAAA and computer vision AI-based 
methods for automated objective assess-
ment of disease diagnosis and prognosis.
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