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Abstract

Pulmonary hypertension (PH) is highly heterogeneous and despite treatment advances it remains a life-shortening condition. There

have been significant advances in imaging technologies, but despite evidence of their potential clinical utility, practice remains

variable, dependent in part on imaging availability and expertise. This statement summarizes current and emerging imaging

modalities and their potential role in the diagnosis and assessment of suspected PH. It also includes a review of commonly

encountered clinical and radiological scenarios, and imaging and modeling-based biomarkers. An expert panel was formed including

clinicians, radiologists, imaging scientists, and computational modelers. Section editors generated a series of summary statements

based on a review of the literature and professional experience and, following consensus review, a diagnostic algorithm and 55

statements were agreed. The diagnostic algorithm and summary statements emphasize the key role and added value of imaging in

the diagnosis and assessment of PH and highlight areas requiring further research.
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Introduction

Pulmonary hypertension (PH) is highly heterogeneous, is
challenging to diagnose and treat, and has a survival
worse than many forms of common cancer.1,2 It ranges
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from a rare form, pulmonary arterial hypertension (PAH),
characterized by a vasculopathy and frequently severe ele-
vation of pressure, to more common usually mild elevations
of pulmonary artery pressure (PAP) seen in severe cardiac
and respiratory disease.3,4 The current system of classifica-
tion identifies five groups, each with distinct pathophysio-
logical characteristics.2,3,5 The diagnosis of PH is usually
first suggested by echocardiography or chest radiography
with confirmation of an elevated PAP at right heart cath-
eterization (RHC). Phenotyping is based on a careful his-
tory, blood testing for associated conditions, detailed
physiological, and imaging investigations.

The treatment of PH is dependent on the underlying cause.
For patients with PAH, drug therapy targeting imbalances in
vasoconstrictor and vasodilator mediators have been shown
to improve exercise capacity, quality of life, and event-free
survival.6–13 However, PAH remains a life-limiting and debil-
itating condition. In chronic thromboembolic pulmonary
hypertension (CTEPH), pulmonary endarterectomy is an
established technique with excellent long-term outcomes14–18

and, more recently, drug therapy19–21 and balloon pulmonary
angioplasty (BPA)22,23 have shown benefit in selected groups
of patients with CTEPH. For patients with other forms of
PH, such as in association with cardiac and respiratory dis-
ease, trials of PAH therapies have thus far been disappoint-
ing.24–26 Accurate classification is key, not only as it defines
treatment but also prognosis27–29 and careful assessment
is therefore crucial in the assessment of patients with sus-
pected PH.

Current assessment tools in the PH clinic and endpoints
used in clinical trials may be limited by a number of factors.
These include insensitivity to change, lack of repeatability,
and the invasive nature of tests. There is a need to identify
new tools and endpoints to aid the physician both in the
clinical environment and in studies of new interven-
tions.30–36 Importantly, over the last 20 years, there has
been major advances in imaging techniques and their appli-
cation including the use of echocardiography, nuclear medi-
cine, computed tomography (CT) scanning, magnetic
resonance imaging (MRI), and molecular imaging.
There is growing evidence demonstrating the value of vari-
ous imaging modalities in the classification, risk stratifica-
tion, and follow-up of patients with PH. Imaging studies
have also provided insights into pathophysiological
mechanisms.37–45

The use of imaging varies across the globe due to a var-
iety of factors including personal preference, availability,
and cost. Given the complex nature of certain imaging inves-
tigations, there are also differences in methods of scan acqui-
sition and post-processing within a given modality.
Consequently, the Pulmonary Vascular Research Institute
(PVRI) have identified imaging as an important area for
international collaboration, with the aim of developing evi-
dence-based statements and sharing best practice, while
recognizing that approaches need to be tailored to imaging
availability. This statement on imaging in PH is aimed at

physicians (including cardiologists and pulmonologists), PH
specialists, radiologists, and imaging scientists.

Methods

The PVRI Imaging Task force met for the first time in Rome
in 2016 with an aim of improving imaging practice globally
in PH. A summary statement from the PVRI was identified
as an important first step in achieving this goal. Participants
were invited from the existing PVRI membership in addition
to international imaging experts. The group included repre-
sentatives from wide-ranging professional backgrounds and
different geographical areas with varied access to imaging.

Groups of authors were assigned to specific sections to
review current literature, identify summary statements, and
develop a diagnostic algorithm. An editorial board met to
preview and refine summary statements and ensure uniform-
ity of style (DGK, DL, JVC, and AJS). To be included in
the final document, summary statements required agreement
of 80% of authors. Statements not meeting this requirement
were reworded until this threshold was reached or the state-
ment rejected. Given the rapid development of imaging tech-
nologies, the recommendations reflect a combination of
published evidence, current practice, and expert opinion.

All authors read and approved the manuscript before
submission.

Section 1: Imaging modalities used in the
assessment of PH

1.1 Chest radiography

Summary statements

1. A chest radiograph is recommended as the initial imaging
test in the assessment of unexplained breathlessness.

2. A normal chest radiograph does not exclude the diagno-
sis of PH

3. Features of PH include pulmonary artery (PA) enlarge-
ment and cardiomegaly.

Chest radiography. Patients with PH frequently present with
breathlessness. The principal role of the chest radiograph
(CXR) is to identify other common causes of breathlessness
(e.g. parenchymal lung disease, pneumonia, pulmonary
edema, pleural effusion, and pneumothorax). The findings
of PH on CXR vary. There may be enlargement of the cen-
tral pulmonary arteries with pruning of the peripheral ves-
sels, features that were observed in the majority of patients
in a registry of patients with idiopathic PAH.46 In addition,
cardiomegaly and features suggestive of right atrial enlarge-
ment may be observed. However, a normal CXR cannot
exclude the diagnosis and the CXR may be normal, where
PAP elevation is modest. Radiographic features may also
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suggest the cause of PH, such as upper lobe venous diver-
sion and left atrial enlargement in patients with left heart
disease, vascular plethora, and peripheral pruning in
patients with Eisenmenger physiology, and interstitial opa-
cities in patients with diffuse parenchymal lung disease.

1.2: Echocardiography

Summary statements

1. Echocardiography is the test of choice in the initial evalu-
ation of suspected PH.

2. Echocardiography should include an assessment of PAP,
cardiac, and valvular function.

3. A probability of PH should be generated using estimated
PAP and additional echocardiographic features.

Doppler and two-dimensional (2D) echocardiography
remains the screening test of choice in the evaluation of sus-
pected PH.47–50 While right ventricular systolic pressure
(RVSP) from the continuous wave Doppler of the peak tri-
cuspid regurgitant velocity (TRV) is the most well-known
tool for assessing the presence or absence of PH, this metric
can be subject to several limitations resulting in over or under
estimation of the true pulmonary artery systolic pressure
(PASP).51 Over the last decade, there have been many studies
evaluating the role of clinically useful and readily available
echo-Doppler parameters that allow one to move beyond the
PASP and assess not just the likelihood of PH, but also the
hemodynamic underpinnings of the disease (i.e. left heart dis-
ease vs. PAH).52,53 As noted in the most recent European
Society of Cardiology (ESC)/European Respiratory Society
(ERS) PH guidelines, ‘‘echocardiography should always be
performed when pulmonary hypertension is suspected and
may be used to infer a diagnosis of pulmonary hypertension
in patients in whom multiple different echocardiographic
measurements are consistent with this diagnosis,’’ even in
the absence of an elevated TRV.54 This can then be used to
generate a probability of PH which will inform the diagnostic
strategy and ‘‘decide the need for cardiac catheterization in
individual patients.’’54 Furthermore, several echo-Doppler
parameters have been shown to have prognostic value in
the setting of established PH.

Clinically useful measures of PH (i.e. elevated RV after-
load) on echocardiography include characteristics of the RV
outflow tract (RVOT) pulse wave Doppler envelope such as
a reduced acceleration time (<100ms),53,55–57 systolic notch-
ing,53,58,59 and pulmonary insufficiency velocity to estimate
mean PAPs (mPAP), as well as interventricular septal flat-
tening (as characterized by the eccentricity index),60

increased right-to-left ventricular ratio (0.8–1.0, 1.1–1.4,
and �1.5 corresponding to mild, moderate, and severe RV
dilatation, respectively),52,54 RV hypertrophy and right
atrial dilation61 and measures of RV function including tri-
cuspid annular plane systolic excursion (TAPSE),62,63 and
RV fractional area change (RVFAC).63–65 While RVFAC is

often limited in the setting of severe RV enlargement,52,63,66

TAPSE is a reproducible measure of RV function which
measures the total displacement of the heart from the RV
base toward the apex in systole, and correlates with radio-
nuclide-derived RV ejection fraction (RVEF).63 TAPSE has
also been shown to be prognostic of poor outcome in PH in
all-comers,62 as well as in follow-up assessment in a PAH
population after initiation of PH therapy.67,68 However,
TAPSE has not been shown as an effective marker of RV
function in pediatric PH.69 Other echocardiographic meas-
ures include the myocardial performance (Tei) index70 and
S’ obtained from tissue Doppler imaging of the tricuspid
annulus.71 Markers of adverse outcomes include pericardial
effusion and enlarged right atrium.72 More recently, RV
longitudinal strain using 2D speckle tracking has been
employed in the quantification of RV function in patients
with PH and has been shown to be impaired in patients with
PH, a predictor of mortality73–76 and useful for assessment
of therapy response.77,78 Lastly, given the complex anatomy
of the right ventricle, recent investigation has focused on the
use of three-dimensional (3D) echocardiography79 and
strain to assess global and regional RV structure and func-
tion and predict outcomes in PH.80

1.3 Nuclear medicine imaging

Summary statements

1. A normal perfusion single photon emission computed
tomography (SPECT) excludes chronic thromboembolic
disease that will benefit from pulmonary endarterectomy
and BPA.

2. Ventilation and perfusion SPECT or SPECT CT is super-
ior to planar scintigraphy.

3. In unexplained hypoxemia, a nuclear medicine shunt
assessment can be used to identify the presence of a
right-to-left shunt.

4. In patients with suspected PA sarcoma, positron-emis-
sion tomography (PET) is recommended.

Ventilation/perfusion (V/Q) SPECT is recommended by the
ESC as the first line screening test for patients with
CTEPH.1 The technique is well established and has excellent
diagnostic value particularly in the absence of lung disease.
The perfusion image involves exposure to ionizing radiation
and requires injection of 99mTc labelled macroaggregated
human albumin (10–90mm in diameter).20 The macro-aggre-
gated albumin becomes trapped within the small pulmonary
arterioles and a 3D image of pulmonary perfusion is acquired.
In CTEPH, typically peripheral wedge-shaped defects of vary-
ing size are shown. Mismatch to ventilation can be confirmed
by comparing ventilation and perfusion images. The added
value of performing ventilation imaging is debated and in
many centers perfusion imaging alone is performed and com-
pared to CT which better demonstrates parenchymal lung dis-
ease. CTEPH may be missed on CT as attenuated distal
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vessels, subsegmental stenosis, and webs may not be appre-
ciated. Early studies demonstrated that scintigraphy was
more sensitive than CT for the detection of CTEPH.
However, given advances in technology, more recent studies
have shown that CT pulmonary angiography and CT SPECT
techniques are equally sensitive.21–23 Dual-energy CT (DECT)
or CT with iodine mapping allow construction of relative per-
fusion maps in addition to providing angiographic images.81–87

Given that 99mTc labelled macroaggregates are trapped by
small pulmonary arterioles, the presence of radioactive
uptake in organs supplied by the systemic circulation (e.g.
the kidneys) can be used to identify the presence of a right-
to-left shunt in hypoxemic patients with PH.19

Positron-emission tomography (PET) allows for observa-
tion of metabolic activity in the body which can be recon-
structed to produce 3D images. Fluorodeoxyglucose (FDG),
a glucose analogue, can be used to assess glucose uptake in
tissues. PET scanning is commonly performed with simul-
taneous acquisition of CT and more recently with MRI for
both functional and structural correlation.28 In patients with
suspected PA sarcoma, PET will show high uptake allowing
differentiation from chronic clot.29,30 However, in acute clot
FDG, uptake may also be elevated, relative to unaffected
vessels.88 In PAH, uptake within the lungs and right ven-
tricle have been demonstrated24–27 although the clinical util-
ity is uncertain.

1.4 Computed tomography

Summary statements

1. CT provides a non-invasive evaluation of vascular, car-
diac, lung parenchymal, and mediastinal structures in
patients with known or suspected PH.

2. Significant parenchymal abnormalities may be seen on
CT evaluation in the presence of normal spirometry, par-
ticularly when there is a significant reduction in gas trans-
fer factor.

3. CT pulmonary angiography to assess the pulmonary
vasculature should be considered in patients presenting
with PH.

4. Imaging biomarkers from CT in patients with suspected
PH should include measurement of PA size, right-to-left
ventricular ratio, and left atrial size.

5. CT aids the classification of PH.

CT is increasingly recognized as a valuable imaging modal-
ity for the evaluation of known or suspected PH.
Advantages of CT include its widespread availability and
accessibility, high spatial resolution, multi-planar imaging
capabilities, and the ability to evaluate the pulmonary vas-
culature, lung parenchyma, cardiac, and mediastinal struc-
tures simultaneously.

CT evaluation of vessels. PA size can be easily measured and
enlargement may suggest the diagnosis of PH. Routine

measurement is recommended particularly in patients at
risk of PH. For the diagnosis of PH in lung disease, a
main PA diameter >29mm had 84% sensitivity, 75% spe-
cificity, and 97% positive predictive value (PPV) for PH
defined as a mPAP� 25mmHg.89 The reliability of measur-
ing the main PA diameter and the ratio of the PA to aorta
(Ao) ratio has also been studied in suspected PH.
Investigators found that a PA:Ao ratio> 1 was 92% specific
for a mPAP> 20mmHg.90 Other reports also support the
use of PA size in the clinical assessment of patients with
PH.91,92 However, it has been shown that an increase in
PA size also reflects disease duration and correlates only
moderately with PAP.93 It has previously been postulated
that the presence of interstitial lung disease independently
influences PA size;94 however, in a large cohort of patients
with suspected PH in association with interstitial lung dis-
ease, the presence and severity of interstitial lung disease did
not influence PA size which was found to be a useful diag-
nostic marker in patients with and without interstitial lung
disease.95

While contrast-enhanced CT angiography is the method
of choice for the evaluation of suspected acute pulmonary
embolism, its role in the evaluation of the pulmonary vas-
culature in the setting of CTEPH has been a more recent
development. Multiple findings are associated with CTEPH,
including intravascular organizing thrombi, webs, and
regions of vascular narrowing or occlusion.96 Mosaic perfu-
sion of the lung parenchyma and enlarged bronchial arteries
are also commonly seen.97–99

Advanced CT capabilities have been studied in the evalu-
ation of PH. DECT provides an assessment of relative per-
fusion and improves the detection of peripheral vascular
occlusion. In one study,85 DECT showed 100% sensitivity
on a per-patient basis compared to V/Q scintigraphy.
However, there was imperfect agreement on a per-vessel
basis. CT perfusion imaging may demonstrate residual per-
fusion abnormalities following therapy for acute pulmonary
embolism, even in the absence of visualized thrombus on the
angiographic portions of the study.100 Perfusion imaging
can also estimate cardiac output and in a small pilot study
could detect PH with high sensitivity and specificity.101,102

PAH is associated with vascular remodeling, including
loss of arterial branching and increased vessel tortuosity.
CT angiography can quantify these features, using fractal
dimension and the ratio of actual vessel length to shortest
linear distance to estimate tortuosity. Studies have shown
these to correlate with hemodynamic measures in PAH.103

However, changes in the fractal dimension were found only
in children with PAH, but not in adults.104 Loss of distal
vascular volume has also been described in patients with
severe emphysema105 and in patients with CTEPH.106

CT evaluation of lung parenchyma. CT is the gold standard for
the evaluation of the lung parenchyma. In a large registry
series, CT measures have proven useful clinically in
the assessment of patients with PAH.38 Centrilobular
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ground-glass opacities are frequently seen in PAH and their
presence on a CT performed for unexplained breathlessness
should raise the possibility of this diagnosis.38,107,108

Features of cardiac decompensation, pleural effusion/
septal lines, and inferior vena cava size predict outcome.38

The presence of emphysema or interstitial lung disease or
bronchiectasis makes the diagnosis of PH in association
with lung disease likely. The addition of expiratory imaging
is helpful to assess for small airways disease. CT may also
identify features associated with rare conditions such as pul-
monary veno-occlusive disease (PVOD) and pulmonary
capillary hemangiomatosis (PCH) (section 2.2). This is an
important differential diagnosis to idiopathic PAH (IPAH)
because PAH therapy may be indicated but has a much
higher risk of severe adverse effects than IPAH.

CT evaluation of cardiac structure and function. CT has historic-
ally not been used for the evaluation of cardiac structural
abnormalities as MRI and echocardiography are the current
modalities of choice. Nonetheless, many cardiac findings
associated with PH can be identified with non-gated con-
trast-enhanced CT, including enlargement of cardiac cham-
bers, thickening of the RV free wall, and leftward deviation
of the interventricular septum. CT can also identify struc-
tural abnormalities associated with congenital heart disease,
such as partial anomalous pulmonary venous return and
intracardiac shunts. Electrocardiogram-gated CT can be
used to quantitatively assess RV and left ventricular (LV)
function. Additionally, a decrease in distensibility of the
main PA is highly correlated with the presence of
PAH.109–111 A study has shown that dynamic contrast-
enhanced CT can measure the transit of contrast, correlated
with cardiac output.102 and is associated with the presence
of PH.101

CT evaluation of mediastinal structures. CT provides detailed
imaging within the mediastinum and may demonstrate find-
ings that give information as to the etiology or severity of
PH. Dilatation of bronchial arteries is a common finding in
CTEPH, but less common in other forms of PH.97,112 A
dilated esophagus in the setting of PH suggests the diagnosis
of systemic sclerosis. Other mediastinal findings, while not
specific to a given etiology, may suggest a poor prognosis.
These include the presence of pericardial effusion, lymph-
adenopathy, and reflux of contrast into the hepatic veins.38

1.5 Magnetic resonance imaging

Summary statements

1. MRI enables comprehensive cardiac evaluation in
patients with suspected PH.

2. MRI is the gold standard technique for the assessment of
biventricular morphology and function and is highly suit-
able for monitoring patients with PH.

3. MRI provides prognostic value in PAH.

4. MRI aids the classification of PH particularly for left
heart disease and chronic thromboembolic disease.

Cardiac MRI is the gold standard for quantification of RV
volumes, mass, function, and flow hemodynamics in the pul-
monary circulation.113,114 Cardiac MRI techniques allow for
non-invasive assessment of RV function and structure using
high spatiotemporal resolution imaging sequences with high
accuracy and reproducibility without exposure to radi-
ation.113 Furthermore, cardiac MRI can be used for assess-
ment of myocardial tissue deformation properties (strain),
global structural evaluation, and perfusion.115–117

Right ventricular size and function. RV hypertrophy and dila-
tion reflect an increased afterload.5 In particular, in
advanced stages of PH, a severely dilated and functionally
compromised right ventricle has a negative effect on LV
diastolic function by means of leftward septal shift and
reduced LV filling associated with decreased RV stroke
volume. Indeed, both RV and LV dimensional metrics
have been shown to have diagnostic potential in treat-
ment-naı̈ve patients with PH and prognostic value in both
adult and child populations.118–120 MRI-derived bi-ventricu-
lar functional and volumetric indices have been shown to
have independent prognostic potential and differentiated
incidental treatment-naı̈ve and prevalent patients in a large
group of patients (n¼ 576).121 Cine MRI derived indices
including interventricular septal bowing, LV eccentricity,
and ventricular dyssynchrony due to prolonged RV contrac-
tion time have been shown to correlate with invasive hemo-
dynamics and are reflective of the overall hemodynamic
condition and disease severity.122,123 Septal deviation mea-
sured by MRI is useful for the diagnosis of PH, but also in
patients with left heart disease septal deviation> 160� can
identify patients with elevated diastolic pulmonary gradi-
ent.124 In addition, MRI has proven useful in the diagnosis
of PH in patients with chronic obstructive pulmonary
disease (COPD), typically a challenging cohort for
echocardiography.125

Late gadolinium enhancement and T1 mapping. Late gadolinium
enhancement (LGE) imaging is used to identify focal myo-
cardial pathology but has also been applied to investigate
regional myocardial disease in the right ventricle as a
response to elevated mechanical stress. The predominant
focus has been on the RV free wall insertion sites to
septum and how the extent of LGE corresponds to RV mor-
phological and dynamic changes.44,45,126–130 Specifically,
LGE was correlated with the reduced RV function, dilation,
mass, and regionally specific LGE was also inversely asso-
ciated with reduced longitudinal strain.128,131 Additionally,
the presence of delayed enhancement at the RV insertion
points has been associated with clinical worsening,127

though in a study using mortality as the endpoint, RV inser-
tion point LGE was not of independent prognostic signifi-
cance. Extension of the LGE into the interventricular
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septum was of prognostic significance at univariate ana-
lysis but was not significant at multivariate analysis.45 A
limited number of studies have explored the role of coronary
arterial flow in PH.117,132 Features may be seen in patients
with PH with LGE imaging; however, its utility in the rou-
tine assessment of suspected PH is not proven. LGE imaging
can be considered where intrinsic cardiac disease is
suspected.

T1 mapping is a quantitative method of assessing myo-
cardial health. Native T1 mapping is performed without the
use of contrast agents and has been shown to be an excellent
differentiator between a healthy and diseased myocar-
dium.133 T1 has been shown to be elevated at the insertion
points in PH in animal134 and human studies.135–137 T1 cor-
relates with markers of RV remodeling135 and septal pos-
ition;138 however, no clear diagnostic or prognostic role has
been identified in PH.138

Right ventricular strain. Myocardial tissue deformation ana-
lysis has been assessed in patients with PH.139–141 RV
morphology limits myocardial tagging and feature tracking
to global longitudinal and circumferential deformation ana-
lysis. MRI-based feature tracking has been shown to have
prognostic potential and was associated with the severity of
PH.142 Measuring LV strain and torsion using tag MRI as
part of ventricular interdependency and dyssynchrony inves-
tigations in CTEPH revealed left–right ventricular resyn-
chronization post endarterectomy.143 However, the clinical
utility of deformation analysis is yet to be determined.

Pulmonary artery and aortic flow measurements. Phase-contrast
MRI (PC-MRI) enables assessment of flow waveform in
major vessels and allows for accurate Qp:Qs assessment,
necessary in patients with suspected congenital lesions.114

Phase-contrast MRI of pulmonary flow is recommended
for assessment of RV stroke volume due to variable tricus-
pid regurgitation and the challenges of contouring the right
ventricle.144 Relative area change of the PA has been shown
to be of clinical value,145,146 and recently has been shown to
be independent of RV measurements and clinical data.37

Black blood slow flow has been shown to be a strong diag-
nostic marker as the flow characteristics of the main and
branch vessels are visualized.147,148 Four-dimensional flow
MRI (4D-Flow MRI) is an emerging technique allowing
evaluation of flow, vorticity, and kinetic energy in any
region of interest. Vortices have been noted in the main
PA of patients with PH. The lifetime of the existence of a
vortex has been shown to correlate with mPAP and may
have utility in the identification of PH.149–152 4D flow also
has the additional benefit that it allows retrospective flow
evaluation by selecting a 2D slice in any plane of the 4D
dataset,153 whereas current techniques rely on the slice pos-
itioning at the time of the scan.

3D MR perfusion and angiography. MR angiography (MRA)
can show characteristic vessel patterns in subtypes of PH,

including pruning in IPAH, thromboembolic obstruction
and stenosis in CTEPH, and splayed vessels in COPD/
emphysema.113 MRA is useful for the assessment of chronic
embolus in the lobar and segmental PA vessels. Beyond the
segmental level, assessment of the PAs with MRA is very
challenging.96 In addition, a central embolus, particularly a
wall adherent clot, can be missed if MRA is reviewed in
isolation; standard white blood MRI sequences can assist
with visualization of a central clot.96

Dynamic contrast-enhanced MRI perfusion is a promis-
ing technique for the assessment of chronic thromboembolic
disease allowing visualization of pulmonary perfusion
defects with sensitivity and specificity similar to that
achieved with SPECT,39 with the advantages of higher spa-
tial resolution and lack of ionizing radiation. Time-resolved
MRA or dynamic contrast-enhanced (DCE) imaging can be
used to measure passage of contrast bolus through the heart
and lungs to assess pulmonary perfusion.154,155 This can be
used to measure mean transit time, time to peak, and blood
volume.152,156,157

1.6 Imaging in conjunction with invasive techniques

Summary statements

1. Catheter-based angiography is used primarily to assess
patients with CTEPH considered as potential candidates
for pulmonary endarterectomy or BPA.

2. Performance of catheter-based angiography requires
skilled operators and should generally be performed in
a PH referral center.

3. Non-invasive imaging approaches can be used to select
patients for pulmonary endarterectomy.

4. Imaging measurements combined with catheter measure-
ments may be used to study RV pressure and volume
relationships.

Digital subtraction angiography. Catheter-based angiography
involves rapid imaging of the PAs during the injection of
contrast material through a catheter placed into the pul-
monary arterial system.158,159 This used to be the primary
method for evaluation of the pulmonary vasculature.
However, given the development of CT and MR methods,
these modalities can also be used.96,106,160 Catheter-based
angiography may be used at expert institutions for the
evaluation of chronic thromboembolism before pulmonary
endarterectomy and is required for BPA.

Assessment of ventricular-arterial coupling. Imaging can be incor-
porated with invasive catheter-based methods for character-
ization of the mechanics of the right ventricle and the
pulmonary arteries. Flow and volumetric MRI measure-
ments in conjunction with pressures obtained from RHC
can be used for assessment of ventricular-arterial cou-
pling.161–163 One method for determining RV contractility
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involves computation of the pressure-volume loop while
using balloon occlusion of the inferior vena cava, permitting
a preload independent assessment of ventricular contractil-
ity.164 In practice, this method requires use of conductance
catheters or the measurement of pressure and flow at the
same time in order to construct the pressure volume loops
with different degrees of preload modulated by the occlusion
of the inferior vena cava. Conductance catheters typically
require calibration of the volume signal from imaging, typ-
ically a baseline cardiac MRI. The ‘‘Single Beat’’ method
using a cardiac catheter can be used to estimate Pmax. This
has been used in conjunction with MRI to measure ventricu-
lar volumes and can serve as a surrogate for Ees/Ea,165 the
relative utility of information from these methods remains
an area of research.166 Cardiac MRI has been used to meas-
ure stroke volume and RV volumes and in conjunction with
pressure measurements to construct pressure-volume loops
and estimate RV contractility.167–170 An entirely MRI-based
non-invasive method of measuring RV to PA coupling has
been proposed, defined by RV stroke volume/RV end-sys-
tolic volume; however, this holds similar information to
RVEF (right ventricular stroke volume / right ventricular
end-diastolic volume).171 Studies have suggested added
prognostic value of coupling measurements,172,173 although
a recent large study suggested it did not add additional prog-
nostic significance over RV volume alone in patients with
PAH.121

Section 2: Imaging adults with pulmonary
hypertension

2.1 The accuracy of cross-sectional imaging to diagnose
pulmonary hypertension and assess pulmonary
hemodynamics

Summary statements

1. A number of CT and MRI findings are characteristic of
PH.

2. Current qualitative approaches to imaging cannot be
used to confidently exclude the presence of PH.

3. Quantitative data obtained from imaging can be used to
diagnose PH and estimate pulmonary hemodynamics.

CT imaging is widely available and measurement of the
PA size has been shown to correlate with mPAP;174 how-
ever, in established PH, there are progressive increases in PA
size over time.175 Pulmonary artery enlargement may
be seen in interstitial lung disease in the absence of PH,94

although a recent publication has shown equivalent diagnos-
tic accuracy in patients with and without interstitial
lung disease. In patients with systemic sclerosis in the
absence of interstitial lung disease, a ratio of main PA
to Ao diameter of at least 1 was highly predictive of
the presence of PAH although a normal ratio did not
exclude PAH.176

MRI is non-invasive, reproducible, and is considered the
gold standard for assessing RV function.177 Studies have
shown a high correlation between RV mass and ventricular
mass index (VMI), the ratio of right-to-left ventricular mass,
and mPAP pressure measured at cardiac catheteriza-
tion.178,179 Recently investigators have shown that combin-
ing VMI and septal curvature improves the accuracy of
estimating mPAP.180 By using MRI to calculate left atrial
volume, pulmonary arterial wedge pressure (PAWP) can be
estimated allowing calculation of the trans-pulmonary gra-
dient.180 Cardiac output can be calculated from LV volu-
metric measurements or phase contrast of flow in the PA or
Ao allowing an entirely non-invasive estimate of pulmonary
vascular resistance (PVR) based on individually derived
MRI measurements. Models using RVEF and average PA
velocity have also demonstrated accuracy for estimating
catheter-derived PVR.181 Studies comparing cardiac mag-
netic resonance cardiac MRI and RHC in patients suspected
of PH have shown that an elevated VMI, reduced PA vel-
ocity, and the presence of increased gadolinium at the hinge
points could predict the presence of PH with a positive pre-
dictive value of >0.9 although no cardiac MRI measure
could confidently exclude PH.179 In summary, although
able to estimate pulmonary hemodynamics and identify
PH with high accuracy in certain groups, imaging is cur-
rently unable to exclude PH.

2.2 How helpful is imaging in identifying the cause of
pulmonary hypertension and subtyping?

Summary statements

1. Different forms of PH and their subtypes may exhibit
characteristic imaging features.

2. Echocardiography and MRI are useful for differentiation
of pre and post capillary PH.

3. CT provides an accurate evaluation of lung structural
abnormalities.

4. Nuclear medicine, CT and MR perfusion imaging can be
used to exclude chronic thromboembolic disease.

5. Different combinations of imaging modalities can be
employed tailored to local expertise and availability.

Many of the imaging findings associated with PH are
common to most or all disease processes leading to PH.
These findings may include enlargement of the central
PAs, right-sided cardiac enlargement, and abnormalities of
lung attenuation. Some imaging findings, however, are more
specific and can help to distinguish among the various
causes of PH. These are discussed in the following section.

Pulmonary arterial hypertension (group 1). Within group 1 PAH,
imaging findings may suggest a specific etiology. Patients
with systemic sclerosis typically have a dilated esophagus,
a central ground glass pattern, and often associated intersti-
tial lung disease. Drug and toxin exposures may also be
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associated with mild parenchymal fibrosis or mosaic lung
attenuation. In patients with portopulmonary hypertension,
the presence of varices, features of liver cirrhosis, and
splenomegaly are frequent. Anomalous pulmonary venous
drainage should be sought as this is frequently associated
with congenital heart disease, in particular a sinus venosus
atrial septal defect which is difficult to detect by transthor-
acic echocardiography. An interatrial shunt may also be
suggested by contrast visualized entering the left atrium
via the interatrial septum. While enlargement of the PAs is
common to all forms of PAH, it is greatest in patients with
Eisenmenger physiology.38 Patients with Eisenmenger physi-
ology may also have laminated proximal thrombus and cal-
cification within the wall of the PA. Bronchial artery
enlargement is most frequently observed in CTEPH but is
also observed in patients with congenital heart disease182

and patients with IPAH and a BMPR-2 mutation.183

PVOD is rare and is characterized by mediastinal lymph-
adenopathy and interlobular septal thickening,184,185 with or
without associated findings of alveolar edema, mediastinal
lymphadenopathy in the setting of a normal sized left
atrium. PCH is frequently associated with nodular foci of
parenchymal infiltration. The triad of peripheral interlobu-
lar septal thickening, centrilobular ground-glass opacities,
and mediastinal lymphadenopathy has a good association
with PVOD and PCH.184,186,187

Pulmonary hypertension due to left heart disease (group 2), pulmon-

ary hypertension due to lung diseases (group 3), and pulmonary

hypertension with unclear and/or multifactorial mechanisms (group

5). Within these groups, imaging may be useful to identify
either left-sided cardiac enlargement (group 2) or diffuse
lung disease (groups 3 or 5). Many lung diseases will have
a distinctive radiographic appearance allowing for specific
diagnosis and grading of severity. Characteristic structural
features of patients with left heart disease which can be
visualized on both CT and MRI include left atrial enlarge-
ment,188–190 absence of posterior displacement of the inter-
ventricular septum,179 and relatively normal RV volumes,
although RV enlargement is seen in more severe disease par-
ticularly in the setting of severe tricuspid regurgitation. The
presence of valvular and coronary artery calcification and
evidence of previous cardiac surgery are more common in
left heart disease although may also be present in patients
with other forms of PH. Echocardiography and MRI allow
a comprehensive functional assessment. Patients with left
heart disease have less RV hypertrophy and compared to
pre-capillary forms of PH have better preserved RV func-
tion. The absence of paradoxical septal motion/septal dis-
placement in the setting of high right-sided pressures infers
an increase in left-sided pressures. Echocardiography allows
assessment of both systolic and diastolic dysfunction and
the identification of valvular heart disease, in addition to
identifying features suggestive of combined post- and pre-
capillary disease.191

Chronic thromboembolic pulmonary hypertension (CTEPH) and other

pulmonary artery obstruction (group 4). A large prospective
study estimated the risk of developing CTEPH after a pul-
monary embolism at 3.8% at two years.192 Imaging plays a
critical role in the evaluation of suspected CTEPH, although
the exact role of each imaging modality is debated. Some of
this uncertainty reflects the rapid development of imaging
technologies. Chest radiographs may suggest the diagnosis
of CTEPH – with cardiomegaly, asymmetrical pulmonary
artery enlargement, pruning of the vasculature and sub-
pleural scarring; however, they are not diagnostic.
Historically decisions on diagnosis and surgical manage-
ment were based on V/Q scintigraphy and conventional
pulmonary angiography with RHC. The role of V/Q scin-
tigraphy (either planar or SPECT imaging) has changed.
SPECT is recommended over planar imaging as it has
higher diagnostic accuracy.193

The current ESC/ERS guidelines recommend that V/Q
scintigraphy be performed in all patients with suspected
CTEPH.194 These recommendations for V/Q scanning are
in part based on clinical experience, previous recommenda-
tions, and on older data.195–197 These data demonstrated a
significant improvement in the detection of CTEPH with
scintigraphy compared to CTPA. However, rapid develop-
ments in CT technology have led to marked improvement in
disease detection and characterization. More recent studies
in experienced centers demonstrate that CTPA has high
diagnostic accuracy for CTEPH.39 Key imaging findings
include identification of eccentric thrombus, intravascular
webs, stenoses with or without post-stenotic dilatation,
and occlusions. Bronchial artery dilatation (commonly
described as a diameter of >2mm) is more commonly seen
than in other forms of PH. The presence of bronchial artery
dilatation is associated with a better outcome following pul-
monary endarterectomy. A mosaic perfusion pattern is seen
in the vast majority of patients with CTEPH. Its presence
should alert the observer to the possibility of CTEPH but
should be differentiated from the mosaic pattern seen in
small airways disease where often single or small clusters
of lobules are involved in contrast to larger geographical
areas typically seen in CTEPH. Performance of expiratory
CT may be helpful in this setting. Peripheral areas of sub-
pleural scarring and cavitation representing healed infarcts
may also be seen in approximately 10% of patients with
CTEPH.198 DECT imaging generates maps of regional
iodine density in the lung parenchyma as a surrogate for
perfusion. This may further improve the evaluation of sus-
pected CTEPH by better demonstrating regions of
decreased or absent blood flow199 and has been shown to
have excellent agreement with SPECT.200 Although the
availability of this technology is relatively limited, iodine
mapping using CTPA with an unenhanced pre-scan is an
emerging technique, which generates a lung perfusion
map. In contrast to DECT, it does not require specialized
hardware but involves subtraction of unenhanced images
from the contrast-enhanced study. This has the advantage
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that subtle abnormalities that may be missed on the angiog-
raphy are unlikely to be overlooked on a perfusion map thus
improving detection of subtle webs and distal disease.81

By providing an assessment of the lung parenchyma and
the mediastinum CT can be helpful in identifying the pres-
ence of diffuse lung diseases and emphysema (groups 3 and
5) and excluding pulmonary vascular obstruction from a
central mass. Parenchymal evaluation may also be valuable
in identifying features suggestive of interstitial edema,
PVOD, or vasculopathy though there is overlap in the ima-
ging features. CT may also identify features suggestive of
large vessel vasculitis or PA sarcoma which may not be
readily appreciated on projectional angiography.

MRI can also provide an evaluation of the pulmonary
vasculature and is increasingly being used in select centers
for the evaluation of known or suspected CTEPH. 4D DCE
lung perfusion MRI techniques201 are widely available on
current MRI systems and have shown excellent test per-
formance in diagnosing CTEPH in a single center registry
setting.39 In addition, a non-contrast, free-breathing venti-
lation perfusion MRI technique, known as the Fourier
Decomposition (FD)-MRI method202,203 has recently
shown initial encouraging results in diagnosing chronic pul-
monary embolism;204 however, this technique needs to be
confirmed in larger multicenter studies. Combined
cardiac MRI and time-resolved MRA exam is suitable for
detailed treatment response evaluation before and after pul-
monary endarterectomy as well as BPA in CTEPH
patients.205,206

CTPA has largely replaced invasive catheter-based angi-
ography as the initial morphological test for PA evaluation
in most centers. However, catheter-based angiography may
still have a role in the evaluation of CTEPH. Older data
suggest that catheter-based angiography may provide a
better assessment of the extent of pulmonary vascular
obstruction than V/Q scintigraphy.207 Additionally, some
expert centers prefer catheter-based angiography for evalu-
ation of the extent of thrombotic disease before PEA.208

Again, CT performance relative to catheter-based angiog-
raphy is generally poorer in older studies159 compared to
more recent data.209,210 This difference again likely reflects
significant advances in CT technique and technology as well
as greater awareness of CTEPH and its imaging features in
imaging circles. When there is diagnostic uncertainty regard-
ing the extent and distribution of chronic thromboembolic
changes on the basis of a single imaging modality
(usually CT), the use of a second morphologic imaging
modality (MRA or catheter-based angiography) may
prove complementary by improving confidence in subtle
lesions or identifying others. This can augment surgical
decision-making.

In recent years, BPA has emerged as an effective thera-
peutic modality in selected patients with CTEPH. This has
put greater emphasis on the evaluation of distal segmental
and subsegmental vasculature. It is generally considered that
at the subsegmental level, catheter-based angiography

outperforms non-invasive morphological techniques (CT/
MRI) which has resulted in increased utilization. Clinical
criteria and imaging algorithms for the selection of patients
for BPA vary between centers but catheter-based diagnostic
angiography for potentially suitable candidates permits con-
firmation of suitable extent and distribution of disease as
well as the patients ability to tolerate a BPA procedure (abil-
ity to maintain breath-hold and tolerate the required period
on the catheter table).211

2.3 Echocardiography and cardiac MR: what are the
advantages and disadvantages of each modality?

Summary statements

1. Echocardiography is more widely available, lower in cost,
and more portable than MRI.

2. Echocardiography is superior to MRI for the evaluation
of valvular heart disease and is more established in the
assessment of diastolic function.

3. MRI provides more accurate quantitative assessment of
RV morphology and function.

4. MRI is more suited to serial assessment than echocardi-
ography due to higher reproducibility.

Echocardiography and cardiac MRI provide value in the
assessment of patients with PH. Echocardiography is well
established in the initial assessment of patients with sus-
pected PH. It has also been evaluated in the serial assess-
ment of patients with PH66,67 and has been found to be
prognostic and is recommended in current guidelines at
follow-up and following treatment change.

Technical factors. Echocardiography has high temporal reso-
lution, is widely available, low in cost, portable, and less
affected by arrhythmia than MRI although real-time ima-
ging212 has helped to counter this limitation at the cost of
lower spatial resolution. Echocardiography is more opera-
tor-dependent and is less reproducible. MRI has the advan-
tage that it has better contrast resolution and is able to
image in any plane making it more suited to accurately
quantify RV morphology and function. Furthermore,
contrast imaging allows assessment of focal abnormalities
of the myocardium and an assessment of myocardial
perfusion.113,116

Estimation of pulmonary hemodynamics. In a systematic review
of the literature, the sensitivity and specificity for echocar-
diography for diagnosing PH was 83% (95% confidence
interval [CI]¼ 73–90) and 72% (95% CI¼ 53–85), respect-
ively. However, echocardiography is less accurate, in lung
disease with sensitivity of 60% and specificity of 74%.213

Empiric approaches have been used to estimate pulmonary
hemodynamics using MRI.178,180 In a recent study, mPAP
was accurately estimated using multivariate regression ana-
lysis of MRI indices, with ventricular mass index and
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interventricular septal angle having additive value in model
for estimation of mPAP.180 It has recently been shown that
with the inclusion of black blood pulmonary arterial slow
flow in addition to ventricular mass index and interventri-
cular septal angle high diagnostic accuracy can be improved
further.147

Right ventricular volumetric and functional assessment. Complete
visualization of the right ventricle with echocardiography
can be challenging, particularly in lung disease, preventing
a complete volumetric evaluation of the right ventricle; this
may be partially negated by the use of 3D echocardiog-
raphy. MRI has the advantage of complete volumetric
evaluation of the cardiac chambers with good reproducibil-
ity of volume, mass, and ejection fraction214 and is con-
sidered the gold standard for serial assessment of RV
volume and function.215 Inaccuracies in segmentation of
the right ventricle at the base of the heart and segmentation
of ventricular trabeculations may be improved using thresh-
old-based approaches.

Echocardiography, using pulsed wave and tissue
Doppler, is an established technique for the assessment of
diastolic function. MRI phase contrast evaluation of the
mitral annulus is feasible216 and in a small study imaging
of the mitral valve annulus, in combination with mitral valve
and pulmonary venous flow, was as accurate as echocardi-
ography.217 Other techniques such as myocardial SPAMM
tagging218 and 4D three-directional velocity encoded
MRI219 have been used to evaluate LV diastolic function.
Long analysis times may reduce the applicability for routine
clinical use.

Valvular heart disease. PH may occur in the setting of valvular
heart disease. Echocardiography is the most useful non-
invasive technique and has the advantage over MRI in
that it has high temporal resolution and allows accurate
quantification of the severity of valvular heart disease.
Left-sided valvular heart disease is a common cause of
group 2 PH. Contemporary studies suggest a prevalence
of PH of 30–40% in patients with mitral stenosis220 upwards
of 30% in patients with severe mitral regurgitation;221 in
asymptomatic patients, the presence of PH serves as an indi-
cation for valve surgery.222 With the emergence of trans-
catheter aortic valve replacement, PH has been noted in
up to 75% of patients with severe aortic stenosis.223

Currently, echocardiography is the recommended non-inva-
sive technique for the assessment of the presence and sever-
ity of valvular disease given its advantages over MRI
including availability, low cost, high temporal resolution,
and widespread experience over many years. Despite this,
there are instances in which echo is limited due to poor
acoustic windows, lack of agreement across quantitative
methods, and significant inter- and intra-observer variabil-
ity, which has led to interest in the emerging role of MRI in
the assessment of valvular heart disease.224,225

2.4 Can imaging replace cardiac catheterization in the
assessment of suspected pulmonary hypertension?

Summary statements

1. Cardiac catheterization is the gold standard for the meas-
urement of PAP.

2. CT and MRI may suggest the diagnosis of PH and quan-
titative MRI metrics can be used to confirm the presence
of PH with high accuracy.

3. At diagnosis MRI and cardiac catheterization provide
equivalent levels of prognostic information.

4. Cardiac catheterization is currently the only way to iden-
tify patients with IPAH likely to benefit from calcium
antagonist therapy.

Current ESC/ERS guidelines226 recommend RHC for the
definitive diagnosis of PH, assessment of intra-cardiac
shunting, and vasodilator testing in selected patients to iden-
tify the 10% of patients with IPAH who may benefit from
high-dose calcium antagonist therapy. Measurements such
as right atrial pressure, cardiac index, and mixed venous
oxygen saturation have prognostic value,227–229 and serial
measurements are currently recommended to assess the
response to therapy.226 The procedure requires meticulous
attention to detail but in expert hands is safe in adults with a
morbidity of approximately 1% and mortality of 0.055%,230

although the risk of complications is significantly higher in
children. Well established criteria at right heart catheter
exist to assess patients with IPAH likely to benefit from
calcium antagonist therapy. However, no such criteria
exist for imaging metrics.

Although current guidelines discuss the role of CT and
MRI in the classification of PH, they are currently con-
sidered an adjunct and not yet considered a replacement
for RHC.

2.5 What is the role of imaging in assessing prognosis
and response to treatment?

Summary statements

1. Echocardiography allows assessment of RV function and
measurements such as right atrial area, RV fractional
area change, and tricuspid annular plane systolic excur-
sion have prognostic value.

2. CT imaging provides prognostic information in PAH but
its role in follow-up is currently limited by exposure to
radiation.

3. A number of cardiac MRI metrics have prognostic value
and changes in cardiac MRI parameters at follow-up
reflect changes in functional capacity and survival.

4. Adjustment of RV functional measurements for age and
sex improves prognostication.

5. Changes in RV function measured by MRI have prog-
nostic value.
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Echocardiography is widely available and a number of met-
rics have been shown to have prognostic value including
right atrial area,231 RV fractional area change,
TAPSE,232–234 and the presence of a pericardial effu-
sion.231,235 Echocardiography is widely used, in many cen-
ters to assess the response to treatment, acknowledging
issues of operator-dependency and reproducibility.

Several measurements made at CTPA—including RV to
LV ratio, right atrial size, and a posteriorly deviated inter-
ventricular septum—predict prognosis in PAH subgroups
while the presence of pleural effusions, septal lines, and
increased inferior vena cava area were independent pre-
dictors of a worse outcome in PAH at presentation regard-
less of subgroup.38 Although this may be helpful at
presentation to guide urgent assessment and introduction
of emergency therapies, the availability of other imaging
modalities and associated radiation exposure necessitates
that CT is not recommended in the assessment of treatment
response.

In contrast, the highly reproducible nature and non-inva-
sive and non-ionizing nature of MRI makes it an ideal
modality to assess treatment response and in the EURO-
MR study236 changes in MRI measured cardiac index and
RV RVEF correlated with changes in World Health
Organization functional class and survival. A study examin-
ing changes in cardiac MRI parameters demonstrated that
this was a better predictor of outcome than PVR measured
invasively at cardiac catheterization.215 MRI metrics includ-
ing increased RV volumes, reduced LV volumes, stroke
volume, cardiac output, and pulsatility of the vasculature
predict a worse outcome in PAH although there is currently
no large study comparing the prognostic value of cardiac
MRI and right heart catheter measures.

2.6 How can we improve imaging techniques to make
them more acceptable to patients?

Summary statements

1. Minimizing radiation dose by the use of non-ionizing
techniques where possible and implementation of dose
reduction protocols will reduce the risks to patients.

2. Involvement of patients in investigative decision-making
will allow a more tailored approach to investigation.

While plain chest radiographs and echocardiography are
generally well-tolerated and acceptable examinations,
cross-sectional techniques do have some specific limitations
and issues, in particular radiation doses for CT and claus-
trophobia for MRI.

The diagnostic information provided by CT needs to be
balanced with the radiation dose. In a life-shortening illness,
concerns regarding radiation exposure rarely impact on the
decision to perform CT imaging at the time of diagnosis.
Advances in dynamic imaging, with improved temporal
resolution, has provided hope that gated CT can challenge

MRI in the assessment of cardiac function; however, such
examinations typically involve higher doses of radiation.
Using iterative reconstruction, dose reduction can be
achieved.237 In fact, large reductions in dose to less than
one-third the dose of standard acquisitions have been
achieved without loss of image quality using iterative recon-
struction,238 and the use of dynamic Z axis collimation has
been shown to further reduce dose.239

Limitations of MRI include long scanning times and
scanner noise, and frequently patients feel claustrophobic
(5%) leading to incomplete examinations. Developments
to reduce scanning time, e.g. novel rapid imaging tech-
niques, and limiting the study to the most clinically relevant
sequences may help. The more widespread installation of
wide bore scanners may help to reduce claustrophobia and
make MRI a more acceptable imaging modality for all
patients. The use of media entertainment may improve
acceptability to patients. More patient involvement in dis-
cussions around the implications of the tests are needed.
Patient participation is advised to determine the issues
most relevant to patients to help develop imaging services.

Section 3 Imaging pathway for suspected
pulmonary hypertension in adults

3.1 Current guidelines

The ESC/ERS guideline on diagnostics and therapy of PH
review current imaging modalities and make a number of
recommendations for incorporation in a diagnostic strat-
egy.2 Echocardiography is recommended as a first-line
non-invasive diagnostic investigation in case of suspicion
of PH. Chest X-ray and high-resolution CT are recom-
mended in patients with high or intermediate probability
of PH following echocardiography and high-resolution CT
should be considered in all patients with PH. Ventilation/
perfusion or perfusion lung scan is recommended in patients
with unexplained PH to exclude CTEPH. Contrast CT angi-
ography of the PA circulation is recommended and pulmon-
ary (catheter-based) angiography should be considered in
the work-up of patients with CTEPH. There are no recom-
mendations for the use of MRI as part of the diagnostic
strategy or algorithm and no discussion of emerging tech-
niques.240,241 Current American College of Chest Physicians
guidelines on PH provide no specific recommendations on
employing imaging as part of a diagnostic strategy in
patients with suspected PH.242

The Cologne Consensus Conference 2016 provides no
additional imaging guidelines.

3.2 PVRI diagnostic imaging pathway

Initial assessment and identification of risk factors. In patients
presenting with symptoms and/or signs suggestive of PH,
a detailed history and the results of basic tests are key in
determining the diagnostic strategy (Fig. 1). Risk factors for
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treatable forms of PH (PAH and CTEPH) must be
sought as their presence reduces the threshold for further
imaging. Basic investigations including an electrocardio-
gram, lung function with gas transfer factor, and a plain
radiography may suggest an alternative diagnosis194 or
increase the probability of PH. Further investigation may
not be required when a confident alternative diagnosis can
be made.

Echocardiograpy. Echocardiography is the recommended first-
line imaging modality in the assessment of suspected PH
and allows evaluation of cardiac structure and function
and an estimate of PAP. Following echocardiography,
patients should be stratified into those at low, high, or inter-
mediate probability of PH according to ESC/ERS guide-
lines.194 Where patients have rapidly progressive symptoms

and a high probability of PH from echocardiography, phys-

icians should not delay referral to expert centers until the

above investigations are completed.

Sub-optimal echocardiography. For patients with a sub-optimal
echocardiogram, imaging with cardiac MRI can be used to
identify patients at increased risk of PH although currently
used metrics cannot confidently exclude mild PH.147 A
number of metrics on CTPA have been shown to reflect
elevated PAPs in addition to providing information on
other potential causes for breathlessness; although evidence
is limited, this may be considered in selected patients.91,95

Low probability of pulmonary hypertension from

echocardiography. For symptomatic patients identified as
low probability from echocardiography, further assessment
is dependent on the presence or absence of risk factors. For
those with risk factors for CTEPH, perfusion lung imaging
is recommended using CT imaging (CT-LSIM of DECTA),
nuclear medicine techniques (ideally SPECT), or MRI per-
fusion imaging.39,81,86,243 If risk factors for PAH exist, the
diagnostic strategy will be dependent on the risk factor; in
systemic sclerosis, given the high prevalence of PAH in
symptomatic patients, further evaluation is advised and a

Fig. 1. PVRI diagnostic algorithm. In this algorithm, patients are classified into low, intermediate, and high risk of PH according to ESC/ERS

guidelines.2 See section 3.2 for a detailed description of how to navigate the algorithm. *For patients with rapidly progressive symptoms

and a high probability of PH on echocardiography do not delay referral to PH centre to complete imaging investigations. PH,

pulmonary hypertension; PAH, pulmonary arterial hypertension; CTEPH, chronic thromboembolic pulmonary hypertension; ECG, electrocar-

diogram; DLco, diffusing capacity of the lungs for carbon monoxide; CXR, chest radiograph; CMRI, cardiac magnetic resonance imaging; CTPA,

computed tomography pulmonary angiography; DECTA, dual-energy computed tomography angiography; CT-LISM, computed tomography lung

iodine subtraction mapping; SPECT, single photon emission computed tomography; RV, right ventricular.
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number of screening regimens exist such as DETECT.244

For other at-risk patients, an interval echocardiographic
examination may be appropriate.194

High or intermediate probability of pulmonary hypertension from

echocardiography and assessment for left heart disease. For
patients with intermediate or high probability of PH, the
echocardiogram should be evaluated for evidence of left
heart disease such as significant valvular heart disease, LV
systolic or diastolic dysfunction. If present, the history
should be re-reviewed to assess for risk factors for left
heart disease (hypertension, obesity, coronary artery dis-
ease, diabetes mellitus, atrial fibrillation). Where risk factors
for PAH or CTEPH are absent and risk factors for left heart
disease present, PAP modestly elevated, left atrial size
increased, no paradoxical septal motion, and/or significant
RV dysfunction present, then no further investigation to
assess for PH may be required. However, where risk factors
for PAH or CTEPH are present, RV function is severely
impaired, systolic PAP is severely elevated (�70mmHg),
and/or paradoxical septal motion exists, then further inves-
tigation to exclude other causes of PH should be con-
sidered.26 If no features of left heart disease exist, patients
should undergo CT pulmonary angiography if no contra-
indications exist.

CT pulmonary angiography. Where left heart disease is
excluded, or if present and other causes of PH cannot be
confidently excluded, then cross-sectional imaging with CT
including CT pulmonary angiography should be considered
as it can aid in: (1) assessment of the likelihood of PH; (2)
classification of disease (identifying features of co-existing
lung disease or left heart disease); and (3) identification of
patients with CTEPH.38 If features of CTEPH are identified
at this stage, patients should be referred directly to a center
experienced in the management of PH for further
evaluation.

Perfusion lung imaging. If CTPA is sub-optimal, indetermin-
ate, or is performed by a center not experienced in the
assessment of PH and CTEPH is not identified, in the
absence of significant parenchymal lung disease, perfusion
lung imaging (Q-SPECT of 3D MR perfusion) is advised at
this stage. CT lung subtraction iodine mapping (CT-LISM)
or DECT in addition to directly visualizing abnormalities in
the pulmonary arterial tree also allows construction of per-
fusion lung maps, preventing the need for other forms of
perfusion lung imaging to exclude CTEPH.81,86,199,245

Supplementary investigations including tests to assess for
conditions associated with PAH such as connective tissue
disease and HIV infection should be considered.1,194

Review and integration of imaging investigations with other tests and

assessment for respiratory disease. Following imaging, the
results should be integrated with the patient’s clinical char-
acteristics. CT imaging may identify unexpected findings

such as thromboembolic disease or parenchymal lung dis-
ease. Given the current lack of evidence for specific inter-
ventions targeting the pulmonary vasculature for patients
with PH in the context of respiratory disease current thera-
pies should be aimed at the underlying condition, recogniz-
ing that the presence of PH identifies patients at increased
risk of death; where appropriate options such as transplant-
ation should be explored. In patients with respiratory dis-
ease with risk factors for PAH or CTEPH, significant RV
dysfunction or severe elevation in systolic PAP
(�70mmHg), referral to a PH center should be considered;
selected patients may be entered into studies or receive a
trial of therapy. In addition to pulmonary vascular phen-
toypes increasingly recognized in respiratory disease,4,246,247

these patients may have other forms of PH such as undiag-
nosed connective tissue disease or CTEPH.247 Where uncer-
tainty exists, discussion or referral to a PH center is
recommended.

Referral or discussion with a pulmonary hypertension referral

center. PH referral centers provide an environment where
specialists are experienced in the assessment of patients
with suspected PH. They also provide specific therapies
and support for people affected by PH. Imaging investiga-
tions will be reviewed and, where sub-optimal, may be
repeated. At this stage, further investigation will usually
be dependent on the pre-test probability of different forms
of PH (Table 1). For patients considered for treatment, car-
diac catheterization is recommended.

CTEPH suspected. For those with evidence of CTEPH on
CTPA or with risk factors such as previous pulmonary
embolus, deep venous thrombosis, splenectomy, or pace-
makers, further evaluation of (1) the pulmonary vasculature
with DSA or MRA, (2) lung perfusion, with SPECT or 3D
MR perfusion, DECTA/CT-LISM, (3) lung ventilation, (4)
biventricular function, with cardiac MRI or 3D echo, and
(5) coronary or further cardiac valvular assessment, if risk
factors for ischemic heart disease exist or co-existant valvu-
lar heart disease is noted, and the patient is considered a
candidate for pulmonary endarterectomy, may be per-
formed. The choice of investigations is also dependent on
the preference of PH referral center, where pulmonary end-
arterectomy or BPA, is being considered. RHC with meas-
urement of PAWP and PVR will aid decisions regarding
appropriateness of the intervention and to confirm the pres-
ence of PH. Where filling defects extend into the proximal
PA and or RV outflow tract, other conditions such as sar-
coma should be considered and FDG-PET-CT may be
helpful.248,249

Patients with risk factors for specific forms of pulmonary

hypertension. In patients with risk factors for specific forms
of PAH, further investigation should be tailored; ultrasound
examination of the liver with portal Doppler ultrasound
should be performed in patients suspected of underlying
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liver disease/portal hypertension. In cases where congenital
heart disease is suspected (features such as anomalous pul-
monary venous drainage or atrial septal defect may have
been detected on CT or transthoracic echocardiography),
transesophageal echocardiography and or cardiac MRI to
estimate Qp:Qs ratio and cardiac catheterization with a sat-
uration run should be considered.250,251 In patients with PH,
where the cause is felt to primarily related to left heart dis-
ease or respiratory disease, RHC may be required to assess
disease severity particularly if a trial of treatment is contem-
plated. Further assessment of RV function in these patients
may be helpful, particularly where the echocardiographic
assessment of RV function was challenging; findings at car-
diac MRI of preserved or mildly impaired RV function or a
normal septal angle in PH-LHD (suggesting the absence of a
pre-capillary component) may negate the need for RHC.124

Unexplained pulmonary hypertension. Where no obvious cause
of PH exists, following review of imaging and integration
with other clinical characteristics, cardiac catheterization
with vasodilator testing should be performed to identify
the 10% of patients with IPAH who have a fall in mPAP
or at least 10mmHg to <40 mmHG with no reduction in
cardiac output, who may respond to treatment with high-
dose calcium channel blockers.194

Unexplained hypoxemia. Hypoxemia in PH is uncommon at
the time of diagnosis in the absence of respiratory disease,
a right-to-left shunt, or a severely reduced gas transfer
factor. If a right-to-left shunt is suspected, a bubble

echocardiogram, renal perfusion SPECT, or MRI (time-
resolved imaging or Qp:Qs) should be considered.

Monitoring of patients at follow-up. Following diagnosis, follow-
up assessments of RV function are recommended to aid
risk stratification119,215 in combination with a clinical assess-
ment and a measurement of exercise capacity. Cardiac MRI
or echocardiography can be used to assess RV function.
In selected cases, follow-up cardiac catheterization may be
performed.

Section 4.0: Imaging children with suspected
pulmonary hypertension

Summary statements

1. Echocardiography is recommended as the initial imaging
investigation in children with suspected PH.

2. Performance of cardiac catheterization in children fre-
quently requires general anesthesia and is associated
with a higher risk of complications than in the adult
population.

3. Diagnostic imaging strategies differ in children compared
to adults reflecting significant differences in disease
etiology.

4. MRI is of additional value in the initial evaluation and
follow-up of PH in conjunction with other non-invasive
techniques such as echocardiography.

5. Imaging techniques should be modified where possible to
provide adequate diagnostic information while avoiding
anesthesia.

Table 1. Recommended imaging investigations in adults with pulmonary hypertension considered for specific pulmonary vascular interventions.

Imaging investigations

All patients Echocardiography

CTPA or DECTA or CT-LSIM

Perfusion lung imaging in selected patients (see section 3.2)

Liver disease suspected or known Ultrasound scan of liver with portal Doppler

Congenital heart disease suspected or known Consider:

MRI with Qp:Qs

Transesophageal echocardiogram

Left heart disease or respiratory disease Cardiac MRI or further echocardiographic studies to assess RV function may reduce

the need to proceed to cardiac catheterization

Suspected CTEPH Consider: MR angiography or digital subtraction angiography

Lung ventilation

If malignant obstruction suspected FDG-PET CT recommended

Unexplained hypoxemia Consider: Bubble echocardiography

Renal Q SPECT

Cardiac MRI Qp:Qs

MR time-resolved imaging

Follow-up of RV function Echocardiography

Cardiac MRI

CTPA, CT pulmonary angiography; DECTA, dual-energy computed tomography angiography; CT-LSIM, computed tomography lung subtraction iodine mapping;

CMRI, cardiac magnetic resonance imaging; Qp:Qs, pulmonary–systemic flow ratio; FDG-PET CT, fluorodeoxyglucose-positron emission tomography computed

tomography; SPECT, single photon emission computed tomography.
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4.1 Introduction

Imaging provides valuable information that aids the man-
agement of patients with PH, from diagnosis and accurate
phenotyping, through to monitoring disease and assessing
response to therapy. The majority of imaging modalities in
medicine and their implementation in hospital environments
have been developed with the needs of adult patients in
mind. While the underlying philosophy and principles of
imaging in children are the same as in adult PH, there are
some challenges which may be more pertinent to imaging
children. With appropriate modification these can be
overcome.

4.2 Differences in the spectrum of disease between adults and

children. While pulmonary vascular disease pathophysiology
is very similar, the context in which it occurs in children is
often very different to adult cohorts of PH. Most notably,
children are much more likely to have PH in the context of
congenital or developmental abnormalities, whereas in adult
populations co-morbid diseases of aging may be more
important. Large cohorts of pediatric patients with PH dem-
onstrate that PH related to congenital heart disease and PH
related to developmental lung disorders predominate with
IPAH responsible for approximately 20% of published
cohorts and CTEPH responsible for <1% of cases.252

Furthermore, approximately 30% of children with PH
have more than one potentially causal association.253

Finally, in a large proportion of children with PH, the PH
is associated with other rare conditions. Taken together, this
means that the pre-test probabilities of different PH etiolo-
gies differ from that in adults. This, in turn, affects the over-
all diagnostic imaging strategy. A diagnostic algorithm for
children has recently been published following the World
Symposium of Pulmonary Hypertension and reflects differ-
ences between adults and children.254

4.3 Scale. The pediatric period covers a period from birth to
adulthood. The body undergoes enormous growth and
development during this period of time and body size can
increase by almost two orders of magnitude. Organ struc-
ture, function, maturity, and complexity continue to develop
through childhood and again enormously during puberty,
profoundly affecting physiology.

The most obvious change through childhood is in size.
This produces challenges when aiming to distinguish normal
organ size from abnormal, e.g. ventricular volume. A
number of approaches have been adopted to address this
challenge. The first is to establish normative data for chil-
dren throughout childhood and express these in terms of
centile charts or standard deviation (Z) scores. Normative
values in echocardiography in large populations of healthy
children are increasing with normative echocardiographic
values published in pediatrics with Boston z-scores.255,256

Normative values in CMR in large populations of healthy
children is challenging and normative data are sometimes
lacking. A second approach is to adopt ratio–metric

relationships, i.e. the parameter in question is simply divided
by a measure of body size, e.g. body surface area (BSA), or
is expressed as a ratio against another cardiovascular par-
ameter in the same patient, e.g. PA to Ao size ratio; how-
ever, these approaches have significant limitations. A more
appropriate and physiologically sound approach to scaling
may be to adopt allometric scaling relationships. This
approach divides the cardiovascular variable of interest by
the body size variable raised to a scalar exponent in the form
x/yb. There are data across a huge range of scales and spe-
cies which show empirically that this approach eliminates
the effect of body size on cardiovascular structure and func-
tion. This approach to scaling or normalization has not been
widely adopted and therefore the relevant scaling exponents
are not well established or accepted.

The effect of scale on imaging resolution. By definition, in chil-
dren spatial scales of structures are smaller (i.e. children are
smaller) and temporal scales are typically shorter (i.e. chil-
dren have higher respiratory rates and higher heart rates).
This therefore affects imaging quality at any given spatio-
temporal resolution. While some adaptations are possible
for example higher frequency ultrasound probes for echo-
cardiography, other imaging modalities suffer from funda-
mental physical and engineering limits to their spatial
temporal resolution. Table 2 suggests some approaches
which may improve spatiotemporal resolution of imaging
modality such that they are suitable for smaller patients.

4.4 Intellectual/emotional maturity

Many imaging modalities require the cooperation of the
patient to achieve optimal imaging results. Children are
often emotionally and intellectually less mature than
adults; thus, securing their cooperation can be more challen-
ging and time-consuming. One approach to this which is
widely used is to sedate or anesthetize children; however,
sedation and anesthesia in children with PH is associated
with a substantial risk of morbidity and mortality and it is
desirable to avoid this wherever possible. Imaging in an
appropriate environment with adequate time and support,
e.g. play therapist involvement and time to familiarize
patients with the environment, can substantially improve
cooperation and imaging quality. Distraction techniques
and allowing parents into the imaging room are extremely
helpful.

4.5 Echocardiography in pediatric pulmonary
hypertension

Echocardiography is used as the initial screening diagnostic
imaging for the diagnosis of pediatric PH and the most
important non-invasive tool that is used for routine assess-
ment.47,48,252,257–259 It is used for continued follow-up and
medication management.260 Developments in echocardiog-
raphy in the past two decades have led to new insights into
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the structure and function of the right ventricle and its role
in various diseases including PH.261,262 Conventional ima-
ging includes assessment of anatomy in two dimensions
(2D), hemodynamics via Doppler echocardiography, and
qualitative and quantitative evaluation of RV and LV func-
tion.47,48,258,260,263–265 Advanced echocardiography includes
evaluation of right heart size and function, myocardial
mechanics, and estimated RV to PA coupling ratio.266–270

Table 3 shows the advantages and limitations of each of
echocardiographic techniques used in pediatric PH. In
recent years, different echocardiography parameters have
been found in small studies to be useful in identifying
high-risk patients who are likely to develop adverse clinical
outcomes.269,271–274 Table 4 demonstrates the echocardio-
graphic views needed to obtain the functional parameters
in pediatric PH.

4.6 Cardiac magnetic resonance imaging in pediatric
pulmonary hypertension

Cardiac MRI remains the gold standard imaging modality
for assessment of bi-ventricular function and volumes in
pediatric PH.252 MRI-derived functional and volumetric
indices predict morbidity and mortality in pediatric PH
and may provide additional information with respect to
inter-ventricular interactions.120,275 In addition, phase-con-
trast MRI remains the state-of-the-art flow imaging tech-
nique enabling precise flow volume quantification and
consequently provides valuable assessment of Qp/Qs ratios
in children with PH associated with congenital heart disease
and intracardiac shunts. Furthermore, parallel or sequential
phase-contrast MRI and pressure evaluation in the catheter-
ization lab has been proposed as a novel and potentially
more reliable method for the calculation of PVR in com-
parison to standard Fick principle or thermodilution.276,277

Recent studies suggest that pulsatile pulmonary vascular
stiffness indices derived by phase-contrast MRI and ultra-
sound may have a strong prognostic potential to predict
both hard and soft outcomes in pediatric PH.278–280

Lastly, MRA can aid with differential diagnosis by fine
characterization of the pulmonary vasculature and exclusion
of thrombi. Unlike echocardiography, cardiac MRI is

currently not suitable for frequent serial assessment due to
its clinical availability, longer post-processing time, and also
due to the necessary anesthesia required for younger chil-
dren and neonates.

In summary, children pose a different set of challenges to
adult populations when it comes to imaging. Given the
proven benefits of imaging adults with PH, it is appropriate
that all patients including children are allowed to experience
these benefits. Appropriate adaptations to imaging strategy
and environment can achieve high-quality results in the vast
majority of pediatric patients.

Section 5 Future directions

5.1 Applications of computational modelling and artificial
intelligence (AI) in pulmonary hypertension

Summary statements

1. Physiological modeling can be used to characterize the
behavior of the cardiopulmonary system.

2. Computational models assessing PA flow have high diag-
nostic accuracy in suspected PH.

3. Machine learning approaches may assist image segmen-
tation and improve diagnostic and prognostic
assessments.

4. Further work to assess computational approaches versus
current diagnostic approaches in PH is recommended.

Imaging modalities and markers derived based on images
alone have been shown to have clinical potential. Their
interpretation could be enriched by introducing additional
knowledge from the application of mathematical models,
which can bring insights into the hemodynamic system
behavior in health and disease.

Based on mathematical and physical principles, models
of the pulmonary circulation are currently being evaluated
in the translational/clinical research. Electrical analogue
(Windkessel or 0D-zero-dimensional) models supplied by
patient-specific 2D phase-contrast MRI data have been pro-
posed281,282 to characterize globally the pulmonary circula-
tion in terms of vascular resistance and compliance in

Table 2. Imaging modalities used in pediatric pulmonary hypertension.

Modality Adaptation Problem

Echocardiography Higher frequency probes provide better spatial and tem-

poral resolution in children; optimized sector width and

focal length improves image quality in children

High heart rate, small structures but better echo windows

reduced distance from probe to structure of interest

CT imaging Multislice Small structures, high heart rates, movement, difficulty in

breath holding, need to avoid sedation anesthesia

MRI Rectangular field of view, partial Fourier encoding, patient-

friendly MRI environment, use of novel real-time

sequences/under-sampling with novel reconstruction

Small structures, high heart rates and respiratory rates,

movement and difficulty breath-holding, need to avoid

anesthesia

CT, computed tomography; MRI, magnetic resonance imaging.

16 | PVRI imaging statement Kiely et al.
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healthy and PH patients. They have also shown promising
results for quantifying the changes of the electric parameters
in patients with PAH, at baseline and follow-up.283 Wave
transmission (one-dimensional [1D]) models are particularly
powerful, as ‘‘waves carry information,’’ and the
energy282,284,285 contained in the backward reflected wave
can be used as an indicator between the right ventricle and
its afterload mismatch. Using a 1D model of a straight elas-
tic tube and temporal MRI flow and area waveforms, it has
been shown that, on average, >40% of the total wave power
was contained in the backward wave measured in patients
with PH, whereas <20% was characteristic to the healthy
volunteers group.282 Different PH heterogeneities can be
mimicked by modifying the structural and elastic param-
eters of a 1D pulmonary tree structure. Several
authors285–287 investigated the pressure and flow waveforms
in healthy and several simulated PH conditions using
numerical solutions of 1D models of the major vessel net-
work. Notably, Qureshi et al.285 changed the configuration
of the structured tree and altering, in turn, the compliance of
the large and small vessels to predict the hemodynamic
changes induced by PAH, CTEPH, and hypoxic lung dis-
ease. The authors showed an increase in the reflected waves
under these simulated conditions, with the potential to dif-
ferentiate between different PH phenotypes.

The 0D and 1D models have the main advantage that they
are relatively simple to implement and do not require signifi-
cant computing resources. However, 3D computational fluid
dynamics (CFD) models are more complex, being able to
provide patient-specific characterization of

hemodynamics.288,289 Full 3D CFD simulations can resolve
the physiological flow field in all three directions and time.
Further post-processing of the CFD results can provide com-
puted metrics (e.g. wall shear stress [WSS]), which give add-
itional insights on disease progression. It has been argued290

that pathological flows in the PA alter cell behavior favoring
vasoconstriction. 3D CFD291,292 studies of the pulmonary
circulation showed that shear stress has an impact on
endothelial health and dysfunction, and reduced WSS in
the proximal PAs were shown to be characteristic to PH
patients.

Machine learning of RV contours to derive tissue motion
has shown to be of prognostic value in PAH and of greater
significance than standard cardiac volumetric metrics.293

Such approaches are of great potential, minimizing user
input/error and potentially providing a more complete prog-
nostic assessment. The added value versus measurements
adjusted for age, sex, and BSA,118,294 or standard CMR
strain parameters in PAH is an area for further work.
Machine learning approaches may significantly improve
the automation and quantification of parameters from ima-
ging. For example, deep learning approaches have already
been utilized for automation of arteriovenous segmentation
of the pulmonary circulation.295

The success of the computational models is closely
related to the available data from the imaging modalities.
Regardless of using the data only to supply the models’
boundary conditions, or integrate it within artificial intelli-
gence algorithms,296,297 the computational models and ima-
ging modalities play together an essential role in the process

Table 4. Echocardiographic views to obtain functional parameters in pediatric PH.

View Functional parameters

Anatomy Parasternal short axis End-systolic RV/LV ratio325

Doppler Parasternal short axis Pulmonary acceleration time/ejection time

Pulmonary regurgitation early and late diastolic velocity

Apical four-chamber Tricuspid regurgitation severity (none, mild, moderate, severe)

Tricuspid regurgitation peak velocity

Myocardial performance index (tricuspid tissue Doppler)327

Systolic/diastolic (S/D) duration ratio from TR Doppler272

Tissue Doppler systolic and diastolic velocities (tricuspid, septal, mitral)

Right atrium Apical four-chamber Right atrial area (RA)

Right ventricle Apical four-chamber Qualitative RV function (good, mildly/moderately/severely depressed)

RV end-diastolic and end-systolic dimensions indexed for BSA (2D)

Fractional area of change (FAC) %

Tricuspid annular planar systolic excursion (TAPSE) with z-score

(M-mode when available, 2D)

RV strain (global and segmental)43,326,328

3D RV volumes and function268,326

Left ventricle Apical two- and four-chamber LV ejection fraction (bi-plane Simpson or 5/6 area-length method)

LV eccentricity index317

LV strain (global)329

3D LV volumes and function324

Other Presence and severity of pericardial effusion (none, small, moderate, large)231

RV, right ventricle; LV, left ventricle; TR, tricuspid regurgitant jet; BSA, body surface area.
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of non-invasive PH diagnostic, prognostic, and understand-
ing of the disease mechanisms.

Section 6 Conclusion and areas of research
priority

In this statement, we have discussed recent advances in ima-
ging techniques in PH and their clinical application. This is
summarized in the PVRI Imaging Task Force diagnostic
algorithm. Rapidly evolving technologies also provide
opportunities to improve our understanding of PH and
assess the impact of much-needed new therapies. This sec-
tion identifies areas requiring further research in addition to
highlighting a number of ongoing and planned studies.

6.1 Establishment of normative ranges and repeatability
of imaging techniques

Despite the widespread use of imaging techniques in clinical
practice, there are only limited data on the impact of age,
sex, and ethnicity on commonly used metrics. The studies
conducted to develop normative equations to allow for cor-
rection have been performed.298–304 However, given the sig-
nificant impact of age, sex, and ethnicity on morphological
characteristics, more research in this area is warranted to
understand variation across populations.

There is increasing interest in using imaging endpoints in
clinical trials to assess treatment response in the clinic setting.
However, there are limited data on the repeatability of car-
diac MRI measurements. The RESPIRE study (clinical-
trials.gov), which should report in the third quarter of
2019, will provide information on the sensitivity to change
relative to measurement repeatability of cardiac MRI mor-
phological and functional data. This will aid the design of
studies considering MRI as a primary endpoint. Even in
the absence of such data, studies such as REPAIR (clinical-
trials.gov) are now using imaging to assess the impact of
pharmacological interventions. The results of these studies
are awaited with interest.

6.2 Comparison of imaging modalities and approaches

There are pros and cons of different imaging modalities with
respect to diagnostic performance, repeatability, availabil-
ity, exposure to ionizing radiation, acceptance to patients,
and cost. Often new imaging modalities and/or approaches
are introduced into clinical practice with limited data. The
cost of conducting large comparative studies and the rapid
advances in the underlying technology that may occur
during the conduct of a study may impact negatively on
decisions to conduct such comparative studies. However,
there is a pressing need to perform such technology apprai-
sals. An important area is the diagnosis of CTEPH, where
there have been significant advances in the imaging of the
pulmonary vasculature. Additional data are required to crit-
ically evaluate these new techniques and challenge current

guideline approaches. Importantly, a number of studies are
planned, including the prospective, multicenter, compara-
tive phase III diagnostic trial CHANGE-MRI, a
European multicenter study comparing functional MRI
and VQ-SPECT. This study aims to recruit 1000 patients
(clinicaltrials.org). The INSPIRE study is a pilot non-
inferiority study comparing iodine subtraction mapping
with VQ-SPECT in patients with suspected CTEPH
(clinicaltrials.gov). A prospective study comparing the
cost and utility of follow-up approaches using echocardiog-
raphy and cardiac MRI in patients with PAH is highly
desirable.

An additional important area of research is the optimiza-
tion of initial diagnostic testing and follow-up based on
imaging availability, particularly where imaging and inva-
sive testing are limited

6.3 Combining imaging with other modalities (genetics
and MRI-augmented right heart catheterization)

With advances in genetics and imaging, there is an opportun-
ity to better understand genotype–phenotype associations that
have the potential to aid clinical decision-making.
Heterozygous mutations in the gene-encoding bone morpho-
gentic protein receptor type 2 (BMPR2) are the most common
genetic cause of PAH, occurring in �15% of cases,185 and
have been associated with worse RV function on cardiac
MRI.305 Bi-allelic mutations in the eukaryotic translation ini-
tiation factor 2 alpha 5 kinase 4 gene (EIF2AK4) are
described in PVOD and PCH,306,307 which are important to
diagnose given their worse prognosis and poorer response to
PAH therapies. In a large international cohort study,185

patients with PVOD were diagnosed based on radiological
criteria; however, a number of patients who were carriers of
EIF2AK4 were not identified by imaging alone. These
patients were younger and had a lower gas transfer factor
and greater interlobular septal thickening and mediastinal
lymphadenopathy. This suggests that combining imaging
with genetic testing in at-risk patients has the potential to
improve diagnostics and prognostication. Integration of gen-
etics, clinical data, and imaging is an exciting area for further
research.

Diagnosis and accurate prognostication in patients with
pulmonary vascular disease remains challenging.
Hemodynamic data from RHC provides important infor-
mation with direct pressure measurement. However, it
does not provide a complete morphological or functional
assessment of the right ventricle and pulmonary circulation.
MRI-augmented catheterization involves invasive RHC per-
formed inside the MRI system.276,308,309 It combines simul-
taneous invasive hemodynamic and MRI morphological
and functional assessment in a single radiation-free proced-
ure, providing detailed physiological insights. Further work
to investigate the potential advantages in terms of clinical
utility, improved understanding of disease, patient accept-
ability, and cost is recommended.
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6.4 Improving our understanding of pulmonary vascular
disease by assessing the distal vasculature and using
novel imaging approaches

A limitation of current imaging modalities in PH is the
insensitivity to visualize and interrogate the distal pulmon-
ary arterial vasculature, the primary site of disease in
patients with PAH. Assessing pulmonary perfusion directly
using novel MRI or CT methods may provide a significant
insight to the underlying small vessel vasculopathy.
Temporal and spatial heterogeneity of the blood flow in
patients at baseline and during PAH therapy is an area for
further research.

Inhaled Xe129 hyperpolarized gas imaging is an emerging
technique. Reports of hyperpolarized gases in CTEPH have
suggested a potential role in follow-up of patients310 and
abnormalities in IPAH have also been reported.311 A patient
inhales Xe129 gas and ventilation images are acquired. Xe129

possesses relatively high solubility in tissues and blood. The
transit of the gas from gas to dissolved phase can be probed
using MRI spectroscopy. This allows the acquisition of
functional parameters characterizing the gas exchange as
well as gas uptake by imaging the dissolved phase. By study-
ing these Xe129 diffusion properties, various microstructure
parameters including alveolar-volume ratio, blood–gas bar-
rier thickness, and surface-to-volume ratio can be
determined.

6.5 Stress imaging of the cardiopulmonary system

Imaging in patients with suspected PH is usually undertaken
at rest but there is increasing interest in evaluating changes
in PAP and RV function on exercise and following other
acute interventions. Exercise echocardiography is well
described312–315 in the assessment of patients with PH, but
currently its use is not widespread. There is increasing inter-
est in using CMR and augmented MRI RHC to assess car-
diopulmonary system on exercise to determine the
differential response of RV morphology and function in
health and disease. Further evaluation of the effect of
acute interventions such as fluid and acute vasodilator chal-
lenges would also be of value.

6.6 Artificial intelligence and applications in
pulmonary hypertension

With the rapid development in machine learning technolo-
gies, there is huge potential to improve imaging assessments.
Image acquisition, analysis, and interpretation are areas that
may benefit from integration of AI technologies. There are a
number of recent publications in this area.293,296,297 Notable
areas for further research include acceleration of MRI
acquisition, improved segmentation of the cardiac cham-
bers on CT and MRI and the pulmonary vasculature on
CT, and diagnostic and prognostic classification and
interpretation.

6.7 The impact of imaging on patients and users

Much of the focus of imaging research is based on the know-
ledge that can obtained by the images themselves. However,
an important area of investigation is the impact of imaging:
on patients and their families, physicians and healthcare
professionals, researchers who interpret the images, and
healthcare systems that fund imaging. The acceptability,
emotional impact, and cost of clinical pathways to diagnose
and serially assess patients requires further research, includ-
ing the relative tolerability, risks, and benefits of different
imaging approaches. A study evaluated the social and
technological epistemology of clinical decision-making as
mediated by imaging.316 This study illustrated that images
can fulfil a mediating role by aiding acquisition of know-
ledge and facilitating communication in addition to illustrat-
ing the highly social aspects of interactions with patients and
within multidisciplinary meetings. Involvement of patients
and their families and users of imaging is required if imaging
is going to fulfil its potential.

Conflict of interest

The author(s) declare that there is no conflict of interest.

Funding

This study was supported by the Wellcome Trust [R/148654-11-1].

ORCID iD

Rebecca Vandepool http://orcid.org/0000-0001-6038-0568

References

1. Kiely DG, Elliot CA, Sabroe I, et al. Pulmonary hypertension:

diagnosis and management. BMJ 2013; 346: f2028.

2. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS

Guidelines for the diagnosis and treatment of pulmonary hyper-

tension: The Joint Task Force for the Diagnosis and Treatment

of Pulmonary Hypertension of the European Society of

Cardiology (ESC) and the European Respiratory Society

(ERS): Endorsed by: Association for European Paediatric and

Congenital Cardiology (AEPC), International Society for Heart

and Lung Transplantation (ISHLT). Eur Respir J 2015; 2:
ERJ–2015.

3. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS

Guidelines for the Diagnosis and Treatment of Pulmonary

Hypertension. Rev Esp Cardiol (Engl Ed) 2016; 69: 177.
4. Hurdman J, Condliffe R, Elliot CA, et al. Pulmonary hyperten-

sion in COPD: results from the ASPIRE registry. The European

respiratory journal 2013; 41: 1292–1301.
5. Hurdman J, Condliffe R, Elliot CA, et al. Aspire Registry:

assessing the spectrum of pulmonary hypertension identified

at a referral centre. Eur Respir J 2011; 2: 2.
6. Gao XF, Zhang JJ, Jiang XM, et al. Targeted drugs for pul-

monary arterial hypertension: a network meta-analysis of 32

randomized clinical trials. Patient Prefer Adherence 2017; 11:

871–885.
7. Manes A, Palazzini M, Leci E, et al. Current era survival of

patients with pulmonary arterial hypertension associated with

20 | PVRI imaging statement Kiely et al.

http://orcid.org/0000-0001-6038-0568
http://orcid.org/0000-0001-6038-0568


congenital heart disease: a comparison between clinical sub-

groups. Eur Heart J 2014; 35: 716–724.

8. Galie N, Corris PA, Frost A, et al. Updated treatment algo-

rithm of pulmonary arterial hypertension. J Am Coll Cardiol

2013; 62: D60–72.

9. Galie N and Ghofrani AH. New horizons in pulmonary arter-

ial hypertension therapies. Eur Respir Rev 2013; 22: 503–514.

10. Galie N, Negro L and Simonneau G. The use of combination

therapy in pulmonary arterial hypertension: new develop-

ments. Eur Respir Rev 2009; 18: 148–153.

11. Zheng YG, Ma H, Hu EC, et al. Oral targeted therapies in the

treatment of pulmonary arterial hypertension: a meta-analysis

of clinical trials. Pulm Pharmacol Ther 2014; 29: 241–249.
12. He B, Zhang F, Li X, et al. Meta-analysis of randomized

controlled trials on treatment of pulmonary arterial hyperten-

sion. Circ J 2010; 74: 1458–1464.
13. Barst RJ, Gibbs JS, Ghofrani HA, et al. Updated evidence-

based treatment algorithm in pulmonary arterial hypertension.

J Am Coll Cardiol 2009; 54: S78–84.
14. Doyle RL, McCrory D, Channick RN, et al. Surgical treat-

ments/interventions for pulmonary arterial hypertension:

ACCP evidence-based clinical practice guidelines. Chest

2004; 126: 63S–71S.
15. Klepetko W, Mayer E, Sandoval J, et al. Interventional and

surgical modalities of treatment for pulmonary arterial hyper-

tension. J Am Coll Cardiol 2004; 43: 73S–80S.

16. Moser KM and Braunwald NS. Successful surgical interven-

tion in severe chronic thromboembolic pulmonary hyperten-

sion. Chest 1973; 64: 29–35.

17. Condliffe R, Kiely DG, Gibbs JS, et al. Improved outcomes in

medically and surgically treated chronic thromboembolic pul-

monary hypertension. Am J Respir Crit Care Med 2008; 177:

1122–1127.
18. Quadery SR, Swift AJ, Billings CG, et al. The impact of

patient choice on survival in chronic thromboembolic pulmon-

ary hypertension. Eur Respir J 2018; 52: 2.
19. Jais X, D’Armini AM, Jansa P, et al. Bosentan for treatment

of inoperable chronic thromboembolic pulmonary hyperten-

sion: BENEFiT (Bosentan Effects in iNopErable Forms of

chronIc Thromboembolic pulmonary hypertension), a rando-

mized, placebo-controlled trial. J Am Coll Cardiol 2008; 52:

2127–2134.
20. Hughes RJ, Jais X, Bonderman D, et al. The efficacy of bosen-

tan in inoperable chronic thromboembolic pulmonary hyper-

tension: a 1-year follow-up study. Eur Respir J 2006; 28:

138–143.
21. Ghofrani HA, Schermuly RT, Rose F, et al. Sildenafil for

long-term treatment of nonoperable chronic thromboembolic

pulmonary hypertension. Am J Respir Crit Care Med 2003;

167: 1139–1141.

22. Phan K, Jo HE, Xu J, et al. Medical Therapy Versus Balloon

Angioplasty for CTEPH: A Systematic Review and Meta-

Analysis. Heart Lung Circ 2018; 27: 89–98.

23. Pitton MB, Herber S, Mayer E, et al. Pulmonary balloon

angioplasty of chronic thromboembolic pulmonary hyperten-

sion (CTEPH) in surgically inaccessible cases. RoFo:

Fortschritte auf dem Gebiete der Rontgenstrahlen und der

Nuklearmedizin 2003; 175: 631–634.
24. Rietema H, Holverda S, Bogaard HJ, et al. Sildenafil treat-

ment in COPD does not affect stroke volume or exercise capa-

city. Eur Respir J 2008; 31: 759–764.

25. Blanco I, Santos S, Gea J, et al. Sildenafil to improve respira-

tory rehabilitation outcomes in COPD: a controlled trial. Eur

Respir J 2013; 42: 982–992.
26. Hussain N, Charalampopoulos A, Ramjug S, et al. Pulmonary

hypertension in patients with heart failure and preserved ejec-

tion fraction: differential diagnosis and management. Pulm

Circ 2016; 6: 3–14.

27. Palazzini M, Dardi F, Manes A, et al. Pulmonary hypertension

due to left heart disease: analysis of survival according to the

haemodynamic classification of the 2015 ESC/ERS guidelines

and insights for future changes. Eur J Heart Fail 2017; 2: 2.
28. Hurdman J, Condliffe R, Elliot CA, et al. ASPIRE registry:

assessing the Spectrum of Pulmonary hypertension Identified

at a REferral centre. Eur Respir J 2012; 39: 945–955.
29. McGoon MD and Miller DP. REVEAL: a contemporary US

pulmonary arterial hypertension registry. Eur Respir Rev 2012;

21: 8–18.

30. Zhang H, Zhang J, Xie DJ, et al. Pulmonary artery denerva-

tion for treatment of a patient with pulmonary hypertension

secondary to left heart disease. Pulm Circ 2016; 6: 240–243.
31. Rothman AM, Arnold ND, Chang W, et al. Pulmonary artery

denervation reduces pulmonary artery pressure and induces

histological changes in an acute porcine model of pulmonary

hypertension. Circ Cardiovasc Interv 2015; 8: e002569.

32. Chen SL, Zhang FF, Xu J, et al. Pulmonary artery denervation

to treat pulmonary arterial hypertension: the single-center,

prospective, first-in-man PADN-1 study (first-in-man pulmon-

ary artery denervation for treatment of pulmonary artery

hypertension). J Am Coll Cardiol 2013; 62: 1092–1100.

33. Zhang YJ, Li MH and Chen SL. Pulmonary arterial hyperten-

sion: pharmacologic therapies and potential pulmonary artery

denervation treatment. EuroIntervention 2013; 9 Suppl R:

R149–154.
34. Hoeper MM, Barst RJ, Bourge RC, et al. Imatinib mesylate as

add-on therapy for pulmonary arterial hypertension: results of

the randomized IMPRES study. Circulation 2013; 127:

1128–1138.

35. Hameed AG, Arnold ND, Chamberlain J, et al. Inhibition of

tumor necrosis factor-related apoptosis-inducing ligand

(TRAIL) reverses experimental pulmonary hypertension.

J Exp Med 2012; 209: 1919–1935.
36. Shah AM, Campbell P, Rocha GQ, et al. Effect of imatinib as

add-on therapy on echocardiographic measures of right ven-

tricular function in patients with significant pulmonary arterial

hypertension. Eur Heart J 2015; 36: 623–632.
37. Swift AJ, Capener D, Johns C, et al. Magnetic Resonance

Imaging in the Prognostic Evaluation of Patients with

Pulmonary Arterial Hypertension. Am J Respir Crit Care

Med 2017; 196: 228–239.

38. Rajaram S, Swift AJ, Condliffe R, et al. CT features of pul-

monary arterial hypertension and its major subtypes: a sys-

tematic CT evaluation of 292 patients from the ASPIRE

Registry. Thorax 2015; 70: 382–387.
39. Rajaram S, Swift AJ, Telfer A, et al. 3D contrast-enhanced

lung perfusion MRI is an effective screening tool for chronic

thromboembolic pulmonary hypertension: results from the

ASPIRE Registry. Thorax 2013; 68: 677–678.

40. Fang W, Zhao L, Xiong CM, et al. Comparison of 18F-FDG

uptake by right ventricular myocardium in idiopathic pulmon-

ary arterial hypertension and pulmonary arterial hypertension

Pulmonary Circulation Volume 9 Number 3 | 21



associated with congenital heart disease. Pulm Circ 2012; 2:

365–372.

41. Marsboom G, Wietholt C, Haney CR, et al. Lung (1)(8)F-

fluorodeoxyglucose positron emission tomography for diagno-

sis and monitoring of pulmonary arterial hypertension. Am J

Respir Crit Care Med 2012; 185: 670–679.

42. Zhao L, Ashek A, Wang L, et al. Heterogeneity in lung

(18)FDG uptake in pulmonary arterial hypertension: potential

of dynamic (18)FDG positron emission tomography with

kinetic analysis as a bridging biomarker for pulmonary vascu-

lar remodeling targeted treatments. Circulation 2013; 128:

1214–1224.
43. Fine NM, Chen L, Bastiansen PM, et al. Outcome prediction

by quantitative right ventricular function assessment in 575

subjects evaluated for pulmonary hypertension. Circulation

Cardiovascular imaging 2013; 6: 711–721.
44. Blyth KG, Groenning BA, Martin TN, et al. Contrast

enhanced-cardiovascular magnetic resonance imaging in

patients with pulmonary hypertension. Eur Heart J 2005; 26:

1993–1999.

45. Swift AJ, Rajaram S, Capener D, et al. LGE patterns in pul-

monary hypertension do not impact overall mortality. JACC

Cardiovascular imaging 2014; 7: 1209–1217.
46. Rich S, Dantzker DR, Ayres SM, et al. Primary pulmonary

hypertension. A national prospective study. Ann Intern Med

1987; 107: 216–223.

47. Bossone E, Ferrara F and Grunig E. Echocardiography in

pulmonary hypertension. Current opinion in cardiology 2015;

30: 574–586.
48. D’Alto M, Romeo E, Argiento P, et al. Pulmonary arterial

hypertension: the key role of echocardiography.

Echocardiography 2015; 32(Suppl 1): S23–37.

49. D’Alto M, Romeo E, Argiento P, et al. Accuracy and precision

of echocardiography versus right heart catheterization for the

assessment of pulmonary hypertension. International journal of

cardiology 2013; 168: 4058–4062.
50. Mazurek JA and Forfia PR. Enhancing the accuracy of echo-

cardiography in the diagnosis of pulmonary arterial hyperten-

sion: looking at the heart to learn about the lungs. Current

opinion in pulmonary medicine 2013; 19: 437–445.
51. Rich JD, Shah SJ, Swamy RS, et al. Inaccuracy of Doppler

echocardiographic estimates of pulmonary artery pressures in

patients with pulmonary hypertension: implications for clinical

practice. Chest 2011; 139: 988–993.
52. Mazurek JA and Forfia PR. Enhancing the accuracy of echo-

cardiography in the diagnosis of pulmonary arterial hyperten-

sion: looking at the heart to learn about the lungs. Curr Opin

Pulm Med 2013; 19: 437–445.
53. Opotowsky AR, Ojeda J, Rogers F, et al. A simple echocar-

diographic prediction rule for hemodynamics in pulmonary

hypertension. CirculationCardiovascular imaging 2012; 5:

765–775.

54. Galie N, Humbert M, et al Authors/Task Force M. 2015 ESC/

ERS Guidelines for the diagnosis and treatment of pulmonary

hypertension: The Joint Task Force for the Diagnosis and

Treatment of Pulmonary Hypertension of the European

Society of Cardiology (ESC) and the European Respiratory

Society (ERS)Endorsed by: Association for European

Paediatric and Congenital Cardiology (AEPC), International

Society for Heart and Lung Transplantation (ISHLT). Eur

Heart J 2015; 2: 2.

55. Kitabatake A, Inoue M, Asao M, et al. Noninvasive evalua-

tion of pulmonary hypertension by a pulsed Doppler techni-

que. Circulation 1983; 68: 302–309.
56. Levy PT, Patel MD, Groh G, et al. Pulmonary Artery

Acceleration Time Provides a Reliable Estimate of Invasive

Pulmonary Hemodynamics in Children. J Am Soc

Echocardiogr 2016; 29: 1056–1065.
57. Koestenberger M, Grangl G, Avian A, et al. Normal

Reference Values and z-scores of the pulmonary artery accel-

eration time in Children and its importance for the assessment

of pulmonary hypertension. Circulation Cardiovascular

Imaging 2017; 10: 2.
58. Arkles JS, Opotowsky AR, Ojeda J, et al. Shape of the right

ventricular Doppler envelope predicts hemodynamics and

right heart function in pulmonary hypertension. Am J Respir

Crit Care Med 2011; 183: 268–276.
59. Takahama H, McCully RB, Frantz RP, et al. Unraveling the

RV Ejection Doppler Envelope: Insight Into Pulmonary

Artery Hemodynamics and Disease Severity. JACC

Cardiovascular imaging 2017; 10: 1268–1277.

60. Ryan T, Petrovic O, Dillon JC, et al. An echocardiographic

index for separation of right ventricular volume and pressure

overload. J Am Coll Cardiol 1985; 5: 918–927.
61. Bossone E, D’Andrea A, D’Alto M, et al. Echocardiography

in pulmonary arterial hypertension: from diagnosis to prog-

nosis. Journal of the American Society of Echocardiography :

official publication of the American Society of

Echocardiography 2013; 26: 1–14.
62. Forfia PR, Fisher MR, Mathai SC, et al. Tricuspid annular

displacement predicts survival in pulmonary hypertension. Am

J Respir Crit Care Med 2006; 174: 1034–1041.
63. Kaul S, Tei C, Hopkins JM, et al. Assessment of right ventri-

cular function using two-dimensional echocardiography. Am

Heart J 1984; 107: 526–531.
64. Lai WW, Gauvreau K, Rivera ES, et al. Accuracy of guideline

recommendations for two-dimensional quantification of the

right ventricle by echocardiography. The international journal

of cardiovascular imaging 2008; 24: 691–698.
65. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations

for cardiac chamber quantification by echocardiography in

adults: an update from the American Society of

Echocardiography and the European Association of

Cardiovascular Imaging. Eur Heart J cardiovascular Imaging

2015; 16: 233–270.

66. Bano M, Kanaan UB, Ehrlich AC, et al. Improvement in

Tricuspid Annular Plane Systolic Excursion with Pulmonary

Hypertension Therapy in Pediatric Patients. Echocardiography

2015; 32: 1228–1232.

67. Ghio S, Pica S, Klersy C, et al. Prognostic value of TAPSE

after therapy optimisation in patients with pulmonary arterial

hypertension is independent of the haemodynamic effects of

therapy. Open heart 2016; 3: e000408.
68. Mazurek JA, Vaidya A, Mathai SC, Roberts JD and Forfia

PR. Follow-up tricuspid annular plane systolic excursion pre-

dicts survival in pulmonary arterial hypertension. Pulm Circ

2017; 7: 361–371.
69. Hauck A, Guo R, Ivy DD and Younoszai A. Tricuspid annu-

lar plane systolic excursion is preserved in young patients with

pulmonary hypertension except when associated with repaired

congenital heart disease. Eur Heart J cardiovascular Imaging

2016; 2: 2.

22 | PVRI imaging statement Kiely et al.



70. Tei C, Dujardin KS, Hodge DO, et al. Doppler echocardio-

graphic index for assessment of global right ventricular func-

tion. J Am Soc Echocardiogr 1996; 9: 838–847.
71. Saxena N, Rajagopalan N, Edelman K and Lopez-Candales

A. Tricuspid annular systolic velocity: a useful measurement in

determining right ventricular systolic function regardless of

pulmonary artery pressures. Echocardiography 2006; 23:

750–755.

72. Raymond RJ, Hinderliter AL, Willis PW, et al.

Echocardiographic predictors of adverse outcomes in primary

pulmonary hypertension. J Am Coll Cardiol 2002; 39:

1214–1219.

73. Sachdev A, Villarraga HR, Frantz RP, et al. Right ventricular

strain for prediction of survival in patients with pulmonary

arterial hypertension. Chest 2011; 139: 1299–1309.
74. Fine NM, Chen L, Bastiansen PM, et al. Outcome prediction

by quantitative right ventricular function assessment in 575

subjects evaluated for pulmonary hypertension. Circ

Cardiovasc Imaging 2013; 6: 711–721.
75. Mukherjee M, Mercurio V, Tedford RJ, et al. Right ventricu-

lar longitudinal strain is diminished in systemic sclerosis com-

pared with idiopathic pulmonary arterial hypertension. Eur

Respir J 2017; 50: 2.
76. Shukla M, Park JH, Thomas JD, et al. Prognostic Value of

Right Ventricular Strain Using Speckle-Tracking

Echocardiography in Pulmonary Hypertension: A Systematic

Review and Meta-analysis. The Canadian journal of cardiology

2018; 34: 1069–1078.
77. Mercurio V, Mukherjee M, Tedford RJ, et al. Improvement in

Right Ventricular Strain with Ambrisentan and Tadalafil

Upfront Therapy in Scleroderma-associated Pulmonary

Arterial Hypertension. Am J Respir Crit Care Med 2018;

197: 388–391.
78. Hopper RK, Wang Y, DeMatteo V, et al. Right ventricular

function mirrors clinical improvement with use of prostacyclin

analogues in pediatric pulmonary hypertension. Pulm Circ

2018; 8: 2045894018759247.
79. Knight DS, Grasso AE, Quail MA, et al. Accuracy and repro-

ducibility of right ventricular quantification in patients with

pressure and volume overload using single-beat three-dimen-

sional echocardiography. J Am Soc Echocardiogr 2015; 28:

363–374.
80. Vitarelli A, Mangieri E, Terzano C, et al. Three-dimensional

echocardiography and 2D-3D speckle-tracking imaging in

chronic pulmonary hypertension: diagnostic accuracy in

detecting hemodynamic signs of right ventricular (RV) failure.

Journal of the American Heart Association 2015; 4: e001584.

81. Tamura M, Yamada Y, Kawakami T, et al. Diagnostic accu-

racy of lung subtraction iodine mapping CT for the evaluation

of pulmonary perfusion in patients with chronic thromboem-

bolic pulmonary hypertension: Correlation with perfusion

SPECT/CT. International journal of cardiology 2017; 243:

538–543.
82. Koike H, Sueyoshi E, Sakamoto I, et al. Quantification of lung

perfusion blood volume (lung PBV) by dual-energy CT in

patients with chronic thromboembolic pulmonary hyperten-

sion (CTEPH) before and after balloon pulmonary angioplasty

(BPA): Preliminary results. European journal of radiology 2016;

85: 1607–1612.
83. Takagi H, Ota H, Sugimura K, et al. Dual-energy CT to esti-

mate clinical severity of chronic thromboembolic pulmonary

hypertension: Comparison with invasive right heart catheter-

ization. European journal of radiology 2016; 85: 1574–1580.

84. Ameli-Renani S, Ramsay L, Bacon JL, et al. Dual-energy com-

puted tomography in the assessment of vascular and parench-

ymal enhancement in suspected pulmonary hypertension.

Journal of thoracic imaging 2014; 29: 98–106.
85. Dournes G, Verdier D, Montaudon M, et al. Dual-energy CT

perfusion and angiography in chronic thromboembolic pul-

monary hypertension: diagnostic accuracy and concordance

with radionuclide scintigraphy. European radiology 2014; 24:

42–51.
86. Hoey ET, Mirsadraee S, Pepke-Zaba J, et al. Dual-energy CT

angiography for assessment of regional pulmonary perfusion

in patients with chronic thromboembolic pulmonary hyperten-

sion: initial experience. AJR American journal of roentgenology

2011; 196: 524–532.
87. Hoey ET, Agrawal SK, Ganesh V, et al. Dual energy CT

pulmonary angiography: findings in a patient with chronic

thromboembolic pulmonary hypertension. Thorax 2009; 64:

1012.
88. Wittram C and Scott JA. 18F-FDG PET of pulmonary embo-

lism. AJR American journal of roentgenology 2007; 189:

171–176.
89. Tan RT, Kuzo R, Goodman LR, et al. Utility of CT scan

evaluation for predicting pulmonary hypertension in patients

with parenchymal lung disease. Medical College of Wisconsin

Lung Transplant Group1998; 113: 1250–1256.
90. Ng CS, Wells AU and Padley SP. A CT sign of chronic pul-

monary arterial hypertension: the ratio of main pulmonary

artery to aortic diameter. Journal of thoracic imaging 1999;

14: 270–278.

91. Devaraj A, Wells AU, Meister MG, et al. Detection of pul-

monary hypertension with multidetector CT and echocardio-

graphy alone and in combination. Radiology 2010; 254:

609–616.
92. Edwards PD, Bull RK and Coulden R. CT measurement of

main pulmonary artery diameter. The British journal of radi-

ology 1998; 71: 1018–1020.

93. Boerrigter B, Mauritz GJ, Marcus JT, et al. Progressive

Dilatation of the Main Pulmonary Artery is a Characteristic

of Pulmonary Arterial Hypertension and is Not Related to

Changes in Pressure. Chest 2010; 2: 2.
94. Devaraj A, Wells AU, Meister MG, et al. The effect of diffuse

pulmonary fibrosis on the reliability of CT signs of pulmonary

hypertension. Radiology 2008; 249: 1042–1049.

95. Chin M, Johns C, Currie BJ, et al. Pulmonary Artery Size in

Interstitial Lung Disease and Pulmonary Hypertension:

Association with Interstitial Lung Disease Severity and

Diagnostic Utility. Frontiers in cardiovascular medicine 2018;

5: 53.

96. Rajaram S, Swift AJ, Capener D, et al. Diagnostic accuracy of

contrast-enhanced MR angiography and unenhanced proton

MR imaging compared with CT pulmonary angiography in

chronic thromboembolic pulmonary hypertension. European

radiology 2012; 22: 310–317.

97. Grosse A, Grosse C and Lang IM. Distinguishing Chronic

Thromboembolic Pulmonary Hypertension From Other

Causes of Pulmonary Hypertension Using CT. AJR

American journal of roentgenology 2017; 209: 1228–1238.
98. Kasai H, Tanabe N, Fujimoto K, et al. Mosaic attenuation

pattern in non-contrast computed tomography for the

Pulmonary Circulation Volume 9 Number 3 | 23



assessment of pulmonary perfusion in chronic thromboem-

bolic pulmonary hypertension. Respiratory investigation

2017; 55: 300–307.
99. King MA, Bergin CJ, Yeung DW, et al. Chronic pulmonary

thromboembolism: detection of regional hypoperfusion with

CT. Radiology 1994; 191: 359–363.
100. Mirsadraee S, Reid JH, Connell M, et al. Dynamic (4D) CT

perfusion offers simultaneous functional and anatomical

insights into pulmonary embolism resolution. Eur J Radiol

2016; 85: 1883–1890.
101. Pienn M, Kovacs G, Tscherner M, et al. Non-invasive deter-

mination of pulmonary hypertension with dynamic contrast-

enhanced computed tomography: a pilot study. European

radiology 2014; 24: 668–676.
102. Pienn M, Kovacs G, Tscherner M, et al. Determination of

cardiac output with dynamic contrast-enhanced computed

tomography. The international journal of cardiovascular ima-

ging 2013; 29: 1871–1878.
103. Helmberger M, Pienn M, Urschler M, et al. Quantification of

tortuosity and fractal dimension of the lung vessels in pul-

monary hypertension patients. PLoS One 2014; 9: e87515.
104. Moledina S, de BA, Schievano S, et al. Fractal branching

quantifies vascular changes and predicts survival in pulmon-

ary hypertension: a proof of principle study. Heart 2011; 97:

1245–1249.
105. Matsuoka S, Washko GR, Yamashiro T, et al. Pulmonary

hypertension and computed tomography measurement of

small pulmonary vessels in severe emphysema. Am J Respir

Crit Care Med 2010; 181: 218–225.

106. Rahaghi FN, Ross JC, Agarwal M, et al. Pulmonary vascular

morphology as an imaging biomarker in chronic thromboem-

bolic pulmonary hypertension. Pulm Circ 2016; 6: 70–81.
107. Szturmowicz M, Kacprzak A, Burakowska B, et al.

Centrilobular nodules in high resolution computed tomogra-

phy of the lung in IPAH patients - preliminary data concern-

ing clinico-radiological correlates. Pneumonologia i

alergologia polska 2016; 84: 265–270.

108. Chaudry G, MacDonald C, Adatia I, et al. CT of the chest in

the evaluation of idiopathic pulmonary arterial hypertension

in children. Pediatric radiology 2007; 37: 345–350.
109. Revel MP, Faivre JB, Remy-Jardin M, et al. Pulmonary

hypertension: ECG-gated 64-section CT angiographic evalua-

tion of new functional parameters as diagnostic criteria.

Radiology 2009; 250: 558–566.

110. Sauvage N, Reymond E, Jankowski A, et al. ECG-gated

computed tomography to assess pulmonary capillary wedge

pressure in pulmonary hypertension. European radiology

2013; 23: 2658–2665.
111. Abel E, Jankowski A, Pison C, et al. Pulmonary artery and

right ventricle assessment in pulmonary hypertension: corre-

lation between functional parameters of ECG-gated CT and

right-side heart catheterization. Acta radiologica 2012; 53:

720–727.
112. Shimizu H, Tanabe N, Terada J, et al. Dilatation of bronchial

arteries correlates with extent of central disease in patients

with chronic thromboembolic pulmonary hypertension.

Circulation journal : official journal of the Japanese

Circulation Society 2008; 72: 1136–1141.
113. Swift AJ, Wild JM, Nagle SK, et al. Quantitative magnetic

resonance imaging of pulmonary hypertension: a practical

approach to the current state of the art. Journal of thoracic

imaging 2014; 29: 68–79.

114. Nayak KS, Nielsen JF, Bernstein MA, et al. Cardiovascular

magnetic resonance phase contrast imaging. J Cardiovasc

Magn Reson 2015; 17: 71.
115. van de Veerdonk MC, Marcus JT, et al. State of the art:

advanced imaging of the right ventricle and pulmonary cir-

culation in humans (2013 Grover Conference series). Pulm

Circ 2014; 4: 158–168.
116. Bradlow WM, Gibbs JS and Mohiaddin RH. Cardiovascular

magnetic resonance in pulmonary hypertension. Journal of

cardiovascular magnetic resonance : official journal of the

Society for Cardiovascular Magnetic Resonance 2012; 14: 6.
117. Vogel-Claussen J, Skrok J, Shehata ML, et al. Right and left

ventricular myocardial perfusion reserves correlate with right

ventricular function and pulmonary hemodynamics in

patients with pulmonary arterial hypertension. Radiology

2011; 258: 119–127.
118. Swift AJ, Rajaram S, Campbell MJ, et al. Prognostic value of

cardiovascular magnetic resonance imaging measurements

corrected for age and sex in idiopathic pulmonary arterial

hypertension. Circulation Cardiovascular imaging 2014; 7:

100–106.
119. van Wolferen SA, Marcus JT, Boonstra A, et al. Prognostic

value of right ventricular mass, volume, and function in idio-

pathic pulmonary arterial hypertension. Eur Heart J 2007; 28:

1250–1257.
120. Moledina S, Pandya B, Bartsota M, et al. Prognostic signifi-

cance of cardiac magnetic resonance imaging in children with

pulmonary hypertension. Circulation Cardiovascular imaging

2013; 6: 407–414.
121. Swift AJ, Capener D, Johns C, et al. Magnetic Resonance

Imaging in the Prognostic Evaluation of Patients with

Pulmonary Arterial Hypertension. Am J Respir Crit Care

Med 2017; 2: 2.
122. Shehata ML, Harouni AA, Skrok J, et al. Regional and

global biventricular function in pulmonary arterial hyperten-

sion: a cardiac MR imaging study. Radiology 2013; 266:

114–122.
123. Freed BH, Collins JD, Francois CJ, et al. MR and CT

Imaging for the Evaluation of Pulmonary Hypertension.

JACC Cardiovascular imaging 2016; 9: 715–732.
124. Johns CS, Wild JM, Rajaram S, et al. Identifying At-Risk

Patients with Combined Pre- and Postcapillary Pulmonary

Hypertension Using Interventricular Septal Angle at

Cardiac MRI. Radiology 2018; 180120.

125. Johns CS, Rajaram S, Capener DA, et al. Non-invasive meth-

ods for estimating mPAP in COPD using cardiovascular

magnetic resonance imaging. European radiology 2018; 28:

1438–1448.

126. Abouelnour AE, Doyle M, Thompson DV, et al. Does Late

Gadolinium Enhancement still have Value? Right Ventricular

Internal Mechanical Work, Ea/Emax and Late Gadolinium

Enhancement as Prognostic Markers in Patients with

Advanced Pulmonary Hypertension via Cardiac MRI.

Cardiology research and cardiovascular medicine 2017; 2:
2017.

127. Freed BH, Gomberg-Maitland M, Chandra S, et al. Late

gadolinium enhancement cardiovascular magnetic resonance

predicts clinical worsening in patients with pulmonary hyper-

tension. Journal of cardiovascular magnetic resonance : official

24 | PVRI imaging statement Kiely et al.



journal of the Society for Cardiovascular Magnetic Resonance

2012; 14: 11.

128. Shehata ML, Lossnitzer D, Skrok J, et al. Myocardial

delayed enhancement in pulmonary hypertension: pulmonary

hemodynamics, right ventricular function, and remodeling.

AJR American journal of roentgenology 2011; 196: 87–94.
129. Bradlow WM, Assomull R, Kilner PJ, et al. Understanding

late gadolinium enhancement in pulmonary hypertension.

Circulation Cardiovascular imaging 2010; 3: 501–503.

130. Junqueira FP, Macedo R, Coutinho AC, et al. Myocardial

delayed enhancement in patients with pulmonary hyperten-

sion and right ventricular failure: evaluation by cardiac MRI.

The British journal of radiology 2009; 82: 821–826.
131. McCann GP, Gan CT, Beek AM, et al. Extent of MRI

delayed enhancement of myocardial mass is related to right

ventricular dysfunction in pulmonary artery hypertension.

AJR American journal of roentgenology 2007; 188: 349–355.
132. van Wolferen SA, Marcus JT, Westerhof N, et al. Right cor-

onary artery flow impairment in patients with pulmonary

hypertension. Eur Heart J 2008; 29: 120–127.
133. Puntmann VO, Voigt T, Chen Z, et al. Native T1 mapping in

differentiation of normal myocardium from diffuse disease in

hypertrophic and dilated cardiomyopathy. JACC

Cardiovascular imaging 2013; 6: 475–484.
134. Garcia-Alvarez A, Garcia-Lunar I, Pereda D, et al.

Association of myocardial T1-mapping CMR with hemody-

namics and RV performance in pulmonary hypertension.

JACC Cardiovascular imaging 2015; 8: 76–82.

135. Spruijt OA, Vissers L, Bogaard HJ, et al. Increased native T1-

values at the interventricular insertion regions in precapillary

pulmonary hypertension. The international journal of cardio-

vascular imaging 2016; 32: 451–459.
136. Chen YY, Yun H, Jin H, et al. Association of native T1 times

with biventricular function and hemodynamics in precapillary

pulmonary hypertension. The international journal of cardio-

vascular imaging 2017; 33: 1179–1189.
137. Reiter U, Reiter G, Kovacs G, et al. Native myocardial T1

mapping in pulmonary hypertension: correlations with car-

diac function and hemodynamics. European radiology 2017;

27: 157–166.

138. Saunders LC, Johns CS, Stewart NJ, et al. Diagnostic and

prognostic significance of cardiovascular magnetic resonance

native myocardial T1 mapping in patients with pulmonary

hypertension. Journal of cardiovascular magnetic resonance :

official journal of the Society for Cardiovascular Magnetic

Resonance 2018; 20: 78.
139. Crowe T, Jayasekera G and Peacock AJ. Non-invasive ima-

ging of global and regional cardiac function in pulmonary

hypertension. Pulm Circ 2018; 8: 2045893217742000.
140. Ohyama Y, Ambale-Venkatesh B, Chamera E, et al.

Comparison of strain measurement from multimodality

tissue tracking with strain-encoding MRI and harmonic

phase MRI in pulmonary hypertension. International journal

of cardiology 2015; 182: 342–348.
141. Oyama-Manabe N, Sato T, Tsujino I, et al. The strain-

encoded (SENC) MR imaging for detection of global right

ventricular dysfunction in pulmonary hypertension. The

international journal of cardiovascular imaging 2013; 29:

371–378.
142. de Siqueira ME, Pozo E, Fernandes VR, et al.

Characterization and clinical significance of right ventricular

mechanics in pulmonary hypertension evaluated with cardio-

vascular magnetic resonance feature tracking. Journal of car-

diovascular magnetic resonance : official journal of the Society

for Cardiovascular Magnetic Resonance 2016; 18: 39.
143. Mauritz GJ, Vonk-Noordegraaf A, Kind T, et al. Pulmonary

endarterectomy normalizes interventricular dyssynchrony

and right ventricular systolic wall stress. Journal of cardiovas-

cular magnetic resonance : official journal of the Society for

Cardiovascular Magnetic Resonance 2012; 14: 5.

144. Mauritz GJ, Marcus JT, Boonstra A, et al. Non-invasive

stroke volume assessment in patients with pulmonary arterial

hypertension: left-sided data mandatory. Journal of cardiovas-

cular magnetic resonance : official journal of the Society for

Cardiovascular Magnetic Resonance 2008; 10: 51.
145. Swift AJ, Rajaram S, Condliffe R, et al. Pulmonary artery

relative area change detects mild elevations in pulmonary

vascular resistance and predicts adverse outcome in pulmon-

ary hypertension. Investigative radiology 2012; 47: 571–577.

146. Gan CT, Lankhaar JW, Westerhof N, et al. Noninvasively

assessed pulmonary artery stiffness predicts mortality in pul-

monary arterial hypertension. Chest 2007; 132: 1906–1912.
147. Johns CS, Kiely DG, Rajaram S, et al. Diagnosis of

Pulmonary Hypertension with Cardiac MRI: Derivation

and Validation of Regression Models. Radiology 2018; 2:
180603.

148. Swift AJ, Rajaram S, Marshall H, et al. Black blood MRI has

diagnostic and prognostic value in the assessment of patients

with pulmonary hypertension. European radiology 2012; 22:

695–702.

149. Reiter U, Reiter G, Kovacs G, et al. Evaluation of elevated

mean pulmonary arterial pressure based on magnetic reso-

nance 4D velocity mapping: comparison of visualization tech-

niques. PloS one 2013; 8: e82212.

150. Reiter U, Reiter G and Fuchsjager M. MR phase-contrast

imaging in pulmonary hypertension. The British journal of

radiology 2016; 89: 20150995.
151. Reiter G, Reiter U, Kovacs G, et al. Blood flow vortices

along the main pulmonary artery measured with MR imaging

for diagnosis of pulmonary hypertension. Radiology 2015;

275: 71–79.
152. Reiter G, Reiter U, Kovacs G, et al. Magnetic resonance-

derived 3-dimensional blood flow patterns in the main pul-

monary artery as a marker of pulmonary hypertension and a

measure of elevated mean pulmonary arterial pressure.

Circulation Cardiovascular imaging 2008; 1: 23–30.
153. Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovas-

cular magnetic resonance consensus statement. J Cardiovasc

Magn Reson 2015; 17: 72.

154. Skrok J, Shehata ML, Mathai S, et al. Pulmonary arterial

hypertension: MR imaging-derived first-pass bolus kinetic

parameters are biomarkers for pulmonary hemodynamics,

cardiac function, and ventricular remodeling. Radiology

2012; 263: 678–687.

155. Ley S, Mereles D, Risse F, et al. Quantitative 3D pulmonary

MR-perfusion in patients with pulmonary arterial hyperten-

sion: correlation with invasive pressure measurements.

European journal of radiology 2007; 61: 251–255.

156. Ohno Y, Hatabu H, Murase K, et al. Primary pulmonary

hypertension: 3D dynamic perfusion MRI for quantitative

analysis of regional pulmonary perfusion. AJR American

journal of roentgenology 2007; 188: 48–56.

Pulmonary Circulation Volume 9 Number 3 | 25



157. Swift AJ, Telfer A, Rajaram S, et al. Dynamic contrast-

enhanced magnetic resonance imaging in patients with pul-

monary arterial hypertension. Pulm Circ 2014; 4: 61–70.
158. Hinrichs JB, Marquardt S, von Falck C, et al. Comparison of

C-arm Computed Tomography and Digital Subtraction

Angiography in Patients with Chronic Thromboembolic

Pulmonary Hypertension. Cardiovascular and interventional

radiology 2016; 39: 53–63.
159. Pitton MB, Kemmerich G, Herber S, et al. [Chronic throm-

boembolic pulmonary hypertension: diagnostic impact of

Multislice-CT and selective Pulmonary-DSA]. RoFo :

Fortschritte auf dem Gebiete der Rontgenstrahlen und der

Nuklearmedizin 2002; 174: 474–479.

160. Ruggiero A and Screaton NJ. Imaging of acute and chronic

thromboembolic disease: state of the art. Clinical radiology

2017; 72: 375–388.
161. Bellofiore A and Chesler NC. Methods for measuring right

ventricular function and hemodynamic coupling with the pul-

monary vasculature. Ann Biomed Eng 2013; 41: 1384–1398.
162. Naeije R. Assessment of right ventricular function in pulmon-

ary hypertension. Current hypertension reports 2015; 17: 35.
163. Haddad F, Hunt SA, Rosenthal DN, et al. Right ventricular

function in cardiovascular disease, part I: Anatomy, physiol-

ogy, aging, and functional assessment of the right ventricle.

Circulation 2008; 117: 1436–1448.
164. Gupta KB, Bavaria JE, Ratcliffe MB, et al. Measurement of

end-systolic pressure-volume relations by intra-aortic balloon

occlusion. Circulation 1989; 80: 1016–1028.
165. Brimioulle S, Wauthy P, Ewalenko P, et al. Single-beat esti-

mation of right ventricular end-systolic pressure-volume rela-

tionship. Am J Physiol Heart Circ Physiol 2003; 284:

H1625–1630.
166. Trip P, Kind T, van de Veerdonk MC, et al. Accurate assess-

ment of load-independent right ventricular systolic function

in patients with pulmonary hypertension. The Journal of heart

and lung transplantation : the official publication of the

International Society for Heart Transplantation 2013; 32:

50–55.
167. Kuehne T, Yilmaz S, Steendijk P, et al. Magnetic resonance

imaging analysis of right ventricular pressure-volume loops:

in vivo validation and clinical application in patients with

pulmonary hypertension. Circulation 2004; 110: 2010–2016.

168. Sanz J, Garcia-Alvarez A, Fernandez-Friera L, et al. Right

ventriculo-arterial coupling in pulmonary hypertension: a

magnetic resonance study. Heart 2012; 98: 238–243.
169. Ramjug S, Hussain N, Hurdman J, et al. Idiopathic and

Systemic Sclerosis-Associated Pulmonary Arterial

Hypertension: A Comparison of Demographic,

Hemodynamic, and MRI Characteristics and Outcomes.

Chest 2017; 152: 92–102.

170. Tedford RJ, Mudd JO, Girgis RE, et al. Right ventricular

dysfunction in systemic sclerosis-associated pulmonary arter-

ial hypertension. Circ Heart Fail 2013; 6: 953–963.
171. Vanderpool RR, Rischard F, Naeije R, Hunter K and Simon

MA. Simple functional imaging of the right ventricle in pul-

monary hypertension: Can right ventricular ejection fraction

be improved? International journal of cardiology 2016; 223:

93–94.
172. Brewis MJ, Bellofiore A, Vanderpool RR, et al. Imaging right

ventricular function to predict outcome in pulmonary arterial

hypertension. International journal of cardiology 2016; 218:

206–211.

173. Vanderpool RR, Pinsky MR, Naeije R, et al. RV-pulmonary

arterial coupling predicts outcome in patients referred for

pulmonary hypertension. Heart 2015; 101: 37–43.
174. Haimovici JB, Trotman-Dickenson B, Halpern EF, et al.

Relationship between pulmonary artery diameter at com-

puted tomography and pulmonary artery pressures at right-

sided heart catheterization. Massachusetts General Hospital

Lung Transplantation Program. Acad Radiol 1997; 4:

327–334.

175. Boerrigter B, Mauritz GJ, Marcus JT, et al. Progressive dila-

tation of the main pulmonary artery is a characteristic of

pulmonary arterial hypertension and is not related to changes

in pressure. Chest 2010; 138: 1395–1401.

176. Condliffe R, Radon M, Hurdman J, et al. CT pulmonary

angiography combined with echocardiography in suspected

systemic sclerosis-associated pulmonary arterial hyperten-

sion. Rheumatology (Oxford) 2011; 2: 2.
177. Grunig E and Peacock AJ. Imaging the heart in pulmonary

hypertension: an update. European respiratory review : an

official journal of the European Respiratory Society 2015; 24:

653–664.
178. Saba TS, Foster J, Cockburn M, et al. Ventricular mass index

using magnetic resonance imaging accurately estimates pul-

monary artery pressure. Eur Respir J 2002; 20: 1519–1524.

179. Swift AJ, Rajaram S, Condliffe R, et al. Diagnostic accuracy

of cardiovascular magnetic resonance imaging of right ven-

tricular morphology and function in the assessment of sus-

pected pulmonary hypertension results from the ASPIRE

registry. Journal of cardiovascular magnetic resonance : official

journal of the Society for Cardiovascular Magnetic Resonance

2012; 14: 40.

180. Swift AJ, Rajaram S, Hurdman J, et al. Noninvasive estima-

tion of PA pressure, flow, and resistance with CMR imaging:

derivation and prospective validation study from the

ASPIRE registry. JACC Cardiovascular imaging 2013; 6:

1036–1047.

181. Sanz J, Kariisa M, Dellegrottaglie S, et al. Evaluation of

pulmonary artery stiffness in pulmonary hypertension with

cardiac magnetic resonance. JACC Cardiovascular imaging

2009; 2: 286–295.

182. Griffin N, Allen D, Wort J, Rubens M and Padley S.

Eisenmenger syndrome and idiopathic pulmonary arterial

hypertension: do parenchymal lung changes reflect aetiology?

Clinical radiology 2007; 62: 587–595.
183. Tio D, Leter E, Boerrigter B, Boonstra A, Vonk-Noordegraaf

A and Bogaard HJ. Risk factors for hemoptysis in idiopathic

and hereditary pulmonary arterial hypertension. PloS one

2013; 8: e78132.
184. Montani D, Achouh L, Dorfmuller P, et al. Pulmonary veno-

occlusive disease: clinical, functional, radiologic, and hemo-

dynamic characteristics and outcome of 24 cases confirmed

by histology. Medicine 2008; 87: 220–233.
185. Hadinnapola C, Bleda M, Haimel M, et al. Phenotypic

Characterization of EIF2AK4 Mutation Carriers in a Large

Cohort of Patients Diagnosed Clinically With Pulmonary

Arterial Hypertension. Circulation 2017; 136: 2022–2033.
186. Miura A, Akagi S, Nakamura K, et al. Different sizes of

centrilobular ground-glass opacities in chest high-resolution

computed tomography of patients with pulmonary veno-

26 | PVRI imaging statement Kiely et al.



occlusive disease and patients with pulmonary capillary

hemangiomatosis. Cardiovascular pathology : the official jour-

nal of the Society for Cardiovascular Pathology 2013; 22:

287–293.
187. Gunther S, Jais X, Maitre S, et al. Computed tomography

findings of pulmonary venoocclusive disease in scleroderma

patients presenting with precapillary pulmonary hyperten-

sion. Arthritis and rheumatism 2012; 64: 2995–3005.
188. Currie BJ, Johns C, Chin M, et al. CT derived left atrial size

identifies left heart disease in suspected pulmonary hyperten-

sion: Derivation and validation of predictive thresholds.

International journal of cardiology 2018; 260: 172–177.
189. Jivraj K, Bedayat A, Sung YK, et al. Left Atrium Maximal

Axial Cross-Sectional Area is a Specific Computed

Tomographic Imaging Biomarker of World Health

Organization Group 2 Pulmonary Hypertension. Journal of

thoracic imaging 2017; 32: 121–126.
190. Huis In ’t Veld AE, Van Vliet AG, Spruijt OA, et al. CTA-

derived left to right atrial size ratio distinguishes between

pulmonary hypertension due to heart failure and idiopathic

pulmonary arterial hypertension. International journal of car-

diology 2016; 223: 723–728.
191. Opotowsky AR, Ojeda J, Rogers F, et al. A simple echocar-

diographic prediction rule for hemodynamics in pulmonary

hypertension. Circulation Cardiovascular imaging 2012; 5:

765–775.
192. Pengo V, Lensing AW, Prins MH, et al. Incidence of chronic

thromboembolic pulmonary hypertension after pulmonary

embolism. The New England journal of medicine 2004; 350:

2257–2264.
193. Phillips JJ, Straiton J and Staff RT. Planar and SPECT ven-

tilation/perfusion imaging and computed tomography for the

diagnosis of pulmonary embolism: A systematic review and

meta-analysis of the literature, and cost and dose comparison.

European journal of radiology 2015; 84: 1392–1400.
194. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS

Guidelines for the diagnosis and treatment of pulmonary

hypertension: The Joint Task Force for the Diagnosis and

Treatment of Pulmonary Hypertension of the European

Society of Cardiology (ESC) and the European Respiratory

Society (ERS): Endorsed by: Association for European

Paediatric and Congenital Cardiology (AEPC),

International Society for Heart and Lung Transplantation

(ISHLT). Eur Heart J 2016; 37: 67–119.
195. Tunariu N, Gibbs SJ, Win Z, et al. Ventilation-perfusion

scintigraphy is more sensitive than multidetector CTPA in

detecting chronic thromboembolic pulmonary disease as a

treatable cause of pulmonary hypertension. Journal of nuclear

medicine : official publication, Society of Nuclear Medicine

2007; 48: 680–684.

196. Soler X, Hoh CK, Test VJ, et al. Single photon emission

computed tomography in chronic thromboembolic pulmon-

ary hypertension. Respirology 2011; 16: 131–137.
197. Fang W, Ni XH, He JG, et al. [Value of radionuclide lung

scintigraphy in the diagnosis and quantitative analysis of

chronic thromboembolic pulmonary hypertension].

Zhonghua xin xue guan bing za zhi 2008; 36: 7–10.

198. Harris H, Barraclough R, Davies C, et al. Cavitating lung

lesions in chronic thromboembolic pulmonary hypertension.

Journal of radiology case reports 2008; 2: 11–21.

199. Le Faivre J, Duhamel A, Khung S, et al. Impact of CT perfu-

sion imaging on the assessment of peripheral chronic pulmon-

ary thromboembolism: clinical experience in 62 patients.

European radiology 2016; 26: 4011–4020.
200. Masy M, Giordano J, Petyt G, et al. Dual-energy CT (DECT)

lung perfusion in pulmonary hypertension: concordance rate

with V/Q scintigraphy in diagnosing chronic thromboembolic

pulmonary hypertension (CTEPH). European radiology 2018;

28: 5100–5110.
201. Tsuchiya N, van Beek EJ, Ohno Y, et al. Magnetic resonance

angiography for the primary diagnosis of pulmonary embo-

lism: A review from the international workshop for pulmon-

ary functional imaging. World journal of radiology 2018; 10:

52–64.
202. Bauman G, Lutzen U, Ullrich M, et al. Pulmonary functional

imaging: qualitative comparison of Fourier decomposition

MR imaging with SPECT/CT in porcine lung. Radiology

2011; 260: 551–559.

203. Voskrebenzev A, Gutberlet M, Klimes F, et al. Feasibility of

quantitative regional ventilation and perfusion mapping with

phase-resolved functional lung (PREFUL) MRI in healthy

volunteers and COPD, CTEPH, and CF patients. Magnetic

resonance in medicine 2018; 79: 2306–2314.

204. Schonfeld C, Cebotari S, Voskrebenzev A, et al. Performance

of perfusion-weighted Fourier decomposition MRI for detec-

tion of chronic pulmonary emboli. Journal of magnetic reso-

nance imaging : JMRI 2015; 42: 72–79.
205. Schoenfeld C, Hinrichs JB, Olsson KM, et al. Cardio-pul-

monary MRI for detection of treatment response after a

single BPA treatment session in CTEPH patients. European

radiology 2018; 2: 2.
206. Schoenfeld C, Cebotari S, Hinrichs J, et al. MR Imaging-

derived Regional Pulmonary Parenchymal Perfusion and

Cardiac Function for Monitoring Patients with Chronic

Thromboembolic Pulmonary Hypertension before and after

Pulmonary Endarterectomy. Radiology 2016; 279: 925–934.

207. Ryan KL, Fedullo PF, Davis GB, et al. Perfusion scan find-

ings understate the severity of angiographic and hemody-

namic compromise in chronic thromboembolic pulmonary

hypertension. Chest 1988; 93: 1180–1185.
208. Auger WR, Kerr KM, Kim NH and Fedullo PF. Evaluation

of patients with chronic thromboembolic pulmonary hyper-

tension for pulmonary endarterectomy. Pulm Circ 2012; 2:

155–162.
209. Ley S, Ley-Zaporozhan J, Pitton MB, et al. Diagnostic per-

formance of state-of-the-art imaging techniques for morpho-

logical assessment of vascular abnormalities in patients with

chronic thromboembolic pulmonary hypertension (CTEPH).

European radiology 2012; 22: 607–616.

210. Reichelt A, Hoeper MM, Galanski M, et al. Chronic throm-

boembolic pulmonary hypertension: evaluation with 64-

detector row CT versus digital substraction angiography.

European journal of radiology 2009; 71: 49–54.
211. Kim NH, Delcroix M, Jais X, et al. Chronic thromboembolic

pulmonary hypertension. Eur Respir J 2019; 53: 2.
212. Uecker M, Zhang S, Voit D, et al. Real-time MRI at a reso-

lution of 20 ms. NMR Biomed 2010; 23: 986–994.
213. Fisher MR, Criner GJ, Fishman AP, et al. Estimating pul-

monary artery pressures by echocardiography in patients with

emphysema. Eur Respir J 2007; 30: 914–921.

Pulmonary Circulation Volume 9 Number 3 | 27



214. Grothues F, Moon JC, Bellenger NG, et al. Interstudy repro-

ducibility of right ventricular volumes, function, and mass

with cardiovascular magnetic resonance. Am Heart J 2004;

147: 218–223.

215. van de Veerdonk MC, Kind T, Marcus JT, et al. Progressive

right ventricular dysfunction in patients with pulmonary

arterial hypertension responding to therapy. J Am Coll

Cardiol 2011; 58: 2511–2519.
216. Paelinck BP, de Roos A, Bax JJ, et al. Feasibility of tissue

magnetic resonance imaging: a pilot study in comparison with

tissue Doppler imaging and invasive measurement. J Am Coll

Cardiol 2005; 45: 1109–1116.
217. Buss SJ, Krautz B, Schnackenburg B, et al. Classification of

diastolic function with phase-contrast cardiac magnetic reso-

nance imaging: validation with echocardiography and age-

related reference values. Clinical research in cardiology : offi-

cial journal of the German Cardiac Society 2014; 103: 441–450.

218. Garot J. The study of diastole by tagged MRI: are we nearly

there yet? Eur Heart J 2004; 25: 1376–1377.

219. Brandts A, Bertini M, van Dijk EJ, et al. Left ventricular

diastolic function assessment from three-dimensional three-

directional velocity-encoded MRI with retrospective valve

tracking. Journal of magnetic resonance imaging : JMRI

2011; 33: 312–319.
220. Fawzy ME, Osman A, Nambiar V, et al. Immediate and long-

term results of mitral balloon valvuloplasty in patients with

severe pulmonary hypertension. The Journal of heart valve

disease 2008; 17: 485–491.

221. Ghoreishi M, Evans CF, DeFilippi CR, et al. Pulmonary

hypertension adversely affects short- and long-term survival

after mitral valve operation for mitral regurgitation: implica-

tions for timing of surgery. The Journal of thoracic and car-

diovascular surgery 2011; 142: 1439–1452.
222. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC

guideline for the management of patients with valvular heart

disease: a report of the American College of Cardiology/

American Heart Association Task Force on Practice

Guidelines. J Am Coll Cardiol 2014; 63: e57–185.

223. O’Sullivan CJ, Wenaweser P, Ceylan O, et al. Effect of

Pulmonary Hypertension Hemodynamic Presentation on

Clinical Outcomes in Patients With Severe Symptomatic

Aortic Valve Stenosis Undergoing Transcatheter Aortic

Valve Implantation: Insights From the New Proposed

Pulmonary Hypertension Classification. Circ Cardiovasc

Interv 2015; 8: e002358.
224. Uretsky S, Argulian E, Narula J, et al. Use of Cardiac

Magnetic Resonance Imaging in Assessing Mitral

Regurgitation: Current Evidence. J Am Coll Cardiol 2018;

71: 547–563.
225. Gulsin GS, Singh A and McCann GP. Cardiovascular mag-

netic resonance in the evaluation of heart valve disease. BMC

medical imaging 2017; 17: 67.
226. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS

Guidelines for the diagnosis and treatment of pulmonary

hypertension: The Joint Task Force for the Diagnosis and

Treatment of Pulmonary Hypertension of the European

Society of Cardiology (ESC) and the European Respiratory

Society (ERS): Endorsed by: Association for European

Paediatric and Congenital Cardiology (AEPC),

International Society for Heart and Lung Transplantation

(ISHLT). Eur Heart J 2016; 37: 67–119.

227. Sandoval J, Bauerle O, Palomar A, et al. Survival in primary

pulmonary hypertension. Validation of a prognostic equa-

tion. Circulation 1994; 89: 1733–1744.
228. Kane GC, Maradit-Kremers H, Slusser JP, et al. Integration

of clinical and hemodynamic parameters in the prediction of

long-term survival in patients with pulmonary arterial hyper-

tension. Chest 2011; 139: 1285–1293.

229. Humbert M, Sitbon O, Chaouat A, et al. Survival in patients

with idiopathic, familial, and anorexigen-associated pulmon-

ary arterial hypertension in the modern management era.

Circulation 2010; 122: 156–163.
230. Hoeper MM, Lee SH, Voswinckel R, et al. Complications of

right heart catheterization procedures in patients with pul-

monary hypertension in experienced centers. J Am Coll

Cardiol 2006; 48: 2546–2552.

231. Raymond RJ, Hinderliter AL, Willis PW, et al.

Echocardiographic predictors of adverse outcomes in primary

pulmonary hypertension. J Am Coll Cardiol 2002; 39:

1214–1219.
232. van Kessel M, Seaton D, Chan J, et al. Prognostic value of

right ventricular free wall strain in pulmonary hypertension

patients with pseudo-normalized tricuspid annular plane sys-

tolic excursion values. The international journal of cardiovas-

cular imaging 2016; 32: 905–912.
233. Mathai SC, Sibley CT, Forfia PR, et al. Tricuspid annular

plane systolic excursion is a robust outcome measure in sys-

temic sclerosis-associated pulmonary arterial hypertension.

The Journal of rheumatology 2011; 38: 2410–2418.
234. Forfia PR, Fisher MR, Mathai SC, et al. Tricuspid annular

displacement predicts survival in pulmonary hypertension.

Am J Respir Crit Care Med 2006; 174: 1034–1041.
235. Fenstad ER, Le RJ, Sinak LJ, et al. Pericardial effusions in

pulmonary arterial hypertension: characteristics, prognosis,

and role of drainage. Chest 2013; 144: 1530–1538.
236. Peacock AJ, Crawley S, McLure L, et al. Changes in right

ventricular function measured by cardiac magnetic resonance

imaging in patients receiving pulmonary arterial hyperten-

sion-targeted therapy: the EURO-MR study. Circulation

Cardiovascular imaging 2014; 7: 107–114.
237. Gosling O, Loader R, Venables P, et al. A comparison of

radiation doses between state-of-the-art multislice CT coron-

ary angiography with iterative reconstruction, multislice CT

coronary angiography with standard filtered back-projection

and invasive diagnostic coronary angiography. Heart 2010;

96: 922–926.

238. Pontana F, Duhamel A, Pagniez J, et al. Chest computed

tomography using iterative reconstruction vs filtered back

projection (Part 2): image quality of low-dose CT examina-

tions in 80 patients. Eur Radiol 2011; 21: 636–643.
239. Christner JA, Zavaletta VA, Eusemann CD, et al.

Dose reduction in helical CT: dynamically adjustable z-axis

X-ray beam collimation. AJR Am J Roentgenol 2010; 194:

W49–55.

240. Pienn M, Kovacs G, Tscherner M, et al. Determination of

cardiac output with dynamic contrast-enhanced computed

tomography. Int J Cardiovasc Imaging 2013; 29: 1871–1878.
241. Pienn M, Kovacs G, Tscherner M, et al. Non-invasive deter-

mination of pulmonary hypertension with dynamic contrast-

enhanced computed tomography: a pilot study. Eur Radiol

2014; 24: 668–676.

28 | PVRI imaging statement Kiely et al.



242. Hoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and

diagnosis of pulmonary hypertension. J Am Coll Cardiol

2013; 62: D42–D50.
243. Ameli-Renani S, Rahman F, Nair A, et al. Dual-energy CT

for imaging of pulmonary hypertension: challenges and

opportunities. Radiographics : a review publication of the

Radiological Society of North America, Inc 2014; 34:

1769–1790.
244. Coghlan JG, Denton CP, Grunig E, et al. Evidence-based

detection of pulmonary arterial hypertension in systemic

sclerosis: the DETECT study. Annals of the rheumatic diseases

2014; 73: 1340–1349.
245. Giordano J, Khung S, Duhamel A, et al. Lung perfusion

characteristics in pulmonary arterial hypertension (PAH)

and peripheral forms of chronic thromboembolic pulmonary

hypertension (pCTEPH): Dual-energy CT experience in 31

patients. European radiology 2017; 27: 1631–1639.
246. Kovacs G, Agusti A, Barbera JA, et al. Pulmonary Vascular

Involvement in Chronic Obstructive Pulmonary Disease Is

There a Pulmonary Vascular Phenotype?. Am J Respir Crit

Care Med 2018; 198: 1000–1011.
247. Chaouat A, Naeije R and Weitzenblum E. Pulmonary hyper-

tension in COPD. Eur Respir J 2008; 32: 1371–1385.
248. Attina D, Niro F, Tchouante P, et al. Pulmonary artery inti-

mal sarcoma. Problems in the differential diagnosis. La

Radiologia medica 2013; 118: 1259–1268.
249. Rajaram S, Swift AJ, Davies C, et al. Primary pulmonary

artery sarcoma and coexisting chronic thromboembolic pul-

monary hypertension. Am J Respir Crit Care Med 2013; 188:

e7–8.
250. Fratz S, Chung T, Greil GF, et al. Guidelines and protocols

for cardiovascular magnetic resonance in children and adults

with congenital heart disease: SCMR expert consensus group

on congenital heart disease. Journal of cardiovascular mag-

netic resonance : official journal of the Society for

Cardiovascular Magnetic Resonance 2013; 15: 51.
251. Howard LS, Grapsa J, Dawson D, et al. Echocardiographic

assessment of pulmonary hypertension: standard operating

procedure. European respiratory review : an official journal

of the European Respiratory Society 2012; 21: 239–248.

252. Abman SH, Hansmann G, Archer SL, et al. Pediatric

Pulmonary Hypertension: Guidelines From the American

Heart Association and American Thoracic Society.

Circulation 2015; 132: 2037–2099.
253. del Cerro Marin MJ, Sabate Rotes A, Rodriguez Ogando A,

et al. Assessing pulmonary hypertensive vascular disease in

childhood. Data from the Spanish registry. Am J Respir Crit

Care Med 2014; 190: 1421–1429.
254. Rosenzweig EB, Abman SH, Adatia I, et al. Paediatric pul-

monary arterial hypertension: updates on definition, classifi-

cation, diagnostics and management. Eur Respir J 2019; 53:

2.
255. Lopez L, Colan S, Stylianou M, et al. Relationship of

Echocardiographic Z Scores Adjusted for Body Surface

Area to Age, Sex, Race, and Ethnicity: The Pediatric Heart

Network Normal Echocardiogram Database. Circ Cardiovasc

Imaging 2017; 10: 2.
256. Koestenberger M, Grangl G, Avian A, et al. Normal

Reference Values and z Scores of the Pulmonary Artery

Acceleration Time in Children and Its Importance for the

Assessment of Pulmonary Hypertension. Circulation

Cardiovascular imaging 2017; 10: 2.
257. Ivy DD, Abman SH, Barst RJ, et al. Pediatric pulmonary

hypertension. J Am Coll Cardiol 2013; 62: D117–126.

258. D’Alto M, Bossone E, Opotowsky AR, et al. Strengths and

weaknesses of echocardiography for the diagnosis of pulmon-

ary hypertension. Int J Cardiol 2018; 263: 177–183.
259. Kasprzak JD, Huttin O, Wierzbowska-Drabik K and Selton-

Suty C. Imaging the Right Heart-Pulmonary Circulation

Unit: The Role of Ultrasound. Heart Fail Clin 2018; 14:

361–376.

260. Jone PN and Ivy DD. Echocardiography in pediatric pul-

monary hypertension. Front Pediatr 2014; 2: 124.

261. Mertens LL and Friedberg MK. Imaging the right ventricle–

current state of the art. Nature reviews Cardiology 2010; 7:

551–563.
262. Haddad F, Doyle R, Murphy DJ, et al. Right ventricular

function in cardiovascular disease, part II: pathophysiology,

clinical importance, and management of right ventricular fail-

ure. Circulation 2008; 117: 1717–1731.
263. Koestenberger M, Friedberg MK, Nestaas E, et al.

Transthoracic echocardiography in the evaluation of pedia-

tric pulmonary hypertension and ventricular dysfunction.

Pulm Circ 2016; 6: 15–29.
264. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the

echocardiographic assessment of the right heart in adults: a

report from the American Society of Echocardiography

endorsed by the European Association of

Echocardiography, a registered branch of the European

Society of Cardiology, and the Canadian Society of

Echocardiography. J Am Soc Echocardiogr 2010; 23:

685–713; quiz 86-8.
265. Ploegstra MJ, Roofthooft MT, Douwes JM, et al.

Echocardiography in pediatric pulmonary arterial hyperten-

sion: early study on assessing disease severity and predicting

outcome. Circulation Cardiovascular imaging 2015; 8: 2.
266. Ferrara F, Gargani L, Ostenfeld E, et al. Imaging the right

heart pulmonary circulation unit: Insights from advanced

ultrasound techniques. Echocardiography 2017; 34:

1216–1231.
267. Rengier F, Melzig C, Derlin T, et al. Advanced imaging in

pulmonary hypertension: emerging techniques and applica-

tions. Int J Cardiovasc Imaging 2018; 2: 2.
268. Jone PN, Patel SS, Cassidy C, et al. Three-dimensional

Echocardiography of Right Ventricular Function Correlates

with Severity of Pediatric Pulmonary Hypertension.

Congenital heart disease 2016; 11: 562–569.
269. Jone PN, Schafer M, Pan Z, et al. 3D echocardiographic

evaluation of right ventricular function and strain: a prognos-

tic study in paediatric pulmonary hypertension. Eur Heart J

Cardiovasc Imaging 2017; 2: 2.
270. Kubba S, Davila CD and Forfia PR. Methods for Evaluating

Right Ventricular Function and Ventricular-Arterial

Coupling. Progress in cardiovascular diseases 2016; 59: 42–51.

271. Jone PN, Schafer M, Li L, et al. Right Atrial Deformation in

Predicting Outcomes in Pediatric Pulmonary Hypertension.

Circulation Cardiovascular imaging 2017; 10: 2.
272. Alkon J, Humpl T, Manlhiot C, et al. Usefulness of the right

ventricular systolic to diastolic duration ratio to predict func-

tional capacity and survival in children with pulmonary

Pulmonary Circulation Volume 9 Number 3 | 29



arterial hypertension. The American journal of cardiology

2010; 106: 430–436.

273. Okumura K, Humpl T, Dragulescu A, et al. Longitudinal

assessment of right ventricular myocardial strain in relation

to transplant-free survival in children with idiopathic pul-

monary hypertension. Journal of the American Society of

Echocardiography : official publication of the American

Society of Echocardiography 2014; 27: 1344–1351.
274. Kassem E, Humpl T and Friedberg MK. Prognostic signifi-

cance of 2-dimensional, M-mode, and Doppler echo indices

of right ventricular function in children with pulmonary

arterial hypertension. American heart journal 2013; 165:

1024–1031.

275. Schafer M, Collins KK, Browne LP, et al. Effect of electrical

dyssynchrony on left and right ventricular mechanics in chil-

dren with pulmonary arterial hypertension. J Heart Lung

Transplant 2018; 37: 870–878.
276. Muthurangu V, Taylor A, Andriantsimiavona R, et al. Novel

method of quantifying pulmonary vascular resistance by use

of simultaneous invasive pressure monitoring and phase-con-

trast magnetic resonance flow. Circulation 2004; 110:

826–834.

277. Schafer M, Truong U, Browne LP, et al. Measuring Flow

Hemodynamic Indices and Oxygen Consumption in

Children with Pulmonary Hypertension: A Comparison of

Catheterization and Phase-Contrast MRI. Pediatric cardiol-

ogy 2018; 39: 268–274.

278. Friesen RM, Schafer M, Ivy DD, et al. Proximal pulmonary

vascular stiffness as a prognostic factor in children with pul-

monary arterial hypertension. Eur Heart J Cardiovasc

Imaging 2018; 2: 2.
279. Schafer M, Wilson N, Ivy DD, et al. Noninvasive wave inten-

sity analysis predicts functional worsening in children with

pulmonary arterial hypertension. Am J Physiol Heart Circ

Physiol 2018; 315: H968–H77.
280. Ploegstra MJ, Brokelman JGM, Roos-Hesselink JW, et al.

Pulmonary arterial stiffness indices assessed by intravascular

ultrasound in children with early pulmonary vascular disease:

prediction of advanced disease and mortality during 20-year

follow-up. Eur Heart J cardiovascular Imaging 2018; 19:

216–224.
281. Lankhaar JW, Westerhof N, Faes TJ, et al. Quantification of

right ventricular afterload in patients with and without pul-

monary hypertension. American journal of physiology Heart

and circulatory physiology 2006; 291: H1731–7.

282. Lungu A, Wild JM, Capener D, et al. MRI model-based non-

invasive differential diagnosis in pulmonary hypertension.

Journal of biomechanics 2014; 47: 2941–2947.
283. Lungu A, Swift AJ, Capener D, et al. Diagnosis of pulmonary

hypertension from magnetic resonance imaging-based com-

putational models and decision tree analysis. Pulm Circ

2016; 6: 181–190.
284. Quail MA, Knight DS, Steeden JA, et al. Noninvasive pul-

monary artery wave intensity analysis in pulmonary hyper-

tension. American journal of physiology Heart and circulatory

physiology 2015; 308: H1603–1611.
285. Qureshi MU and Hill NA. A computational study of pressure

wave reflections in the pulmonary arteries. Journal of mathe-

matical biology 2015; 71: 1525–1549.
286. Qureshi MU, Vaughan GD, Sainsbury C, et al. Numerical

simulation of blood flow and pressure drop in the pulmonary

arterial and venous circulation. Biomechanics and modeling in

mechanobiology 2014; 13: 1137–1154.

287. Olufsen MS, Hill NA, Vaughan GD, et al. Rarefaction and

blood pressure in systemic and pulmonary arteries. Journal of

fluid mechanics 2012; 705: 280–305.
288. Morris PD, Narracott A, von Tengg-Kobligk H, et al.

Computational fluid dynamics modelling in cardiovascular

medicine. Heart 2016; 102: 18–28.
289. Wells JM, Morrison JB, Bhatt SP, et al. Pulmonary Artery

Enlargement Is Associated With Cardiac Injury During

Severe Exacerbations of COPD. Chest 2016; 149: 1197–1204.

290. Li M, Stenmark KR, Shandas R, et al. Effects of pathological

flow on pulmonary artery endothelial production of vasoac-

tive mediators and growth factors. Journal of vascular

research 2009; 46: 561–571.
291. Kheyfets V, Thirugnanasambandam M, Rios L, et al. The

role of wall shear stress in the assessment of right ventricle

hydraulic workload. Pulm Circ 2015; 5: 90–100.

292. Kheyfets VO, Rios L, Smith T, et al. Patient-specific compu-

tational modeling of blood flow in the pulmonary arterial

circulation. Computer methods and programs in biomedicine

2015; 120: 88–101.
293. Dawes TJW, de Marvao A, Shi W, et al. Machine Learning of

Three-dimensional Right Ventricular Motion Enables

Outcome Prediction in Pulmonary Hypertension: A Cardiac

MR Imaging Study. Radiology 2017; 283: 381–390.
294. Swift AJ, Capener D, Hammerton C, et al. Right ventricular

sex differences in patients with idiopathic pulmonary arterial

hypertension characterised by magnetic resonance imaging:

pair-matched case controlled study. PloS one 2015; 10:

e0127415.
295. Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, et al.

Pulmonary Artery-Vein Classification in CT Images Using

Deep Learning. IEEE transactions on medical imaging 2018;

37: 2428–2440.

296. Avendi MR, Kheradvar A and Jafarkhani H. Automatic seg-

mentation of the right ventricle from cardiac MRI using a

learning-based approach. Magnetic resonance in medicine

2017; 78: 2439–2448.
297. Avendi MR, Kheradvar A and Jafarkhani H. A combined

deep-learning and deformable-model approach to fully auto-

matic segmentation of the left ventricle in cardiac MRI.

Medical image analysis 2016; 30: 108–119.
298. Truong QA, Massaro JM, Rogers IS, et al. Reference values

for normal pulmonary artery dimensions by noncontrast car-

diac computed tomography: the Framingham Heart Study.

Circulation Cardiovascular imaging 2012; 5: 147–154.

299. Maceira AM, Cosin-Sales J, Roughton M, et al. Reference

right atrial dimensions and volume estimation by steady state

free precession cardiovascular magnetic resonance. Journal of

cardiovascular magnetic resonance : official journal of the

Society for Cardiovascular Magnetic Resonance 2013; 15: 29.

300. Maceira AM, Prasad SK, Khan M, et al. Reference right

ventricular systolic and diastolic function normalized to

age, gender and body surface area from steady-state free pre-

cession cardiovascular magnetic resonance. Eur Heart J 2006;

27: 2879–2888.

301. Kawut SM, Lima JA, Barr RG, et al. Sex and race differences

in right ventricular structure and function: the multi-ethnic

study of atherosclerosis-right ventricle study. Circulation

2011; 123: 2542–2551.

30 | PVRI imaging statement Kiely et al.



302. Grunig E, Biskupek J, D’Andrea A, et al. Reference ranges

for and determinants of right ventricular area in healthy

adults by two-dimensional echocardiography. Respiration;

international review of thoracic diseases 2015; 89: 284–293.
303. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER,

et al. Normal values for cardiovascular magnetic resonance

in adults and children. Journal of cardiovascular magnetic

resonance : official journal of the Society for Cardiovascular

Magnetic Resonance 2015; 17: 29.
304. Nevsky G, Jacobs JE, Lim RP, et al. Sex-specific normalized

reference values of heart and great vessel dimensions in car-

diac CT angiography. AJR American journal of roentgenology

2011; 196: 788–794.

305. van der Bruggen CE, Happe CM, Dorfmuller P, et al. Bone

Morphogenetic Protein Receptor Type 2 Mutation in

Pulmonary Arterial Hypertension: A View on the Right

Ventricle. Circulation 2016; 133: 1747–1760.
306. Eyries M, Montani D, Girerd B, et al. EIF2AK4 mutations

cause pulmonary veno-occlusive disease, a recessive form of

pulmonary hypertension. Nature genetics 2014; 46: 65–69.

307. Best DH, Sumner KL, Austin ED, et al. EIF2AK4 mutations

in pulmonary capillary hemangiomatosis. Chest 2014; 145:

231–236.
308. Barber NJ, Ako EO, Kowalik GT, et al. Magnetic

Resonance-Augmented Cardiopulmonary Exercise Testing:

Comprehensively Assessing Exercise Intolerance in Children

With Cardiovascular Disease. Circulation Cardiovascular ima-

ging 2016; 9: 2.
309. Razavi R, Hill DL, Keevil SF, et al. Cardiac catheterisation

guided by MRI in children and adults with congenital heart

disease. Lancet 2003; 362: 1877–1882.
310. Marshall H, Kiely DG, Parra-Robles J, et al. Magnetic reso-

nance imaging of ventilation and perfusion changes in

response to pulmonary endarterectomy in chronic throm-

boembolic pulmonary hypertension. Am J Respir Crit Care

Med 2014; 190: e18–19.
311. Dahhan T, Kaushik SS, He M, et al. Abnormalities in hyper-

polarized (129)Xe magnetic resonance imaging and spectro-

scopy in two patients with pulmonary vascular disease. Pulm

Circ 2016; 6: 126–131.

312. Grunig E, Tiede H, Enyimayew EO, et al. Assessment and

prognostic relevance of right ventricular contractile reserve in

patients with severe pulmonary hypertension. Circulation

2013; 128: 2005–2015.
313. Grunig E, Weissmann S, Ehlken N, et al. Stress Doppler

echocardiography in relatives of patients with idiopathic

and familial pulmonary arterial hypertension: results of a

multicenter European analysis of pulmonary artery pressure

response to exercise and hypoxia. Circulation 2009; 119:

1747–1757.
314. Jaijee SK, Quinlan M, Tokarczuk P, et al. Exercise cardiac

MRI unmasks right ventricular dysfunction in acute hypoxia

and chronic pulmonary arterial hypertension. American jour-

nal of physiology Heart and circulatory physiology 2018; 2: 2.
315. Bellofiore A, Dinges E, Naeije R, et al. Reduced haemody-

namic coupling and exercise are associated with vascular stif-

fening in pulmonary arterial hypertension. Heart 2017; 103:

421–427.

316. van Baalen S, Carusi A, Sabroe I, et al. A social-technological

epistemology of clinical decision-making as mediated by ima-

ging. Journal of evaluation in clinical practice 2017; 23:

949–58.
317. Ryan T, Petrovic O, Dillon JC, et al. An echocardiographic

index for separation of right ventricular volume and pressure

overload. J Am Coll Cardiol 1985; 5: 918–927.

318. Mori S, Nakatani S, Kanzaki H, et al. Patterns of the inter-

ventricular septal motion can predict conditions of patients

with pulmonary hypertension. Journal of the American

Society of Echocardiography : official publication of the

American Society of Echocardiography 2008; 21: 386–393.
319. Groh GK, Levy PT, Holland MR, et al. Doppler echocardio-

graphy inaccurately estimates right ventricular pressure in

children with elevated right heart pressure. Journal of the

American Society of Echocardiography : official publication

of the American Society of Echocardiography 2014; 27:

163–171.

320. Koestenberger M, Ravekes W, Everett AD, et al. Right ven-

tricular function in infants, children and adolescents: refer-

ence values of the tricuspid annular plane systolic excursion

(TAPSE) in 640 healthy patients and calculation of z score

values. J Am Soc Echocardiogr 2009; 22: 715–719.

321. Hauck A, Guo R, Ivy DD and Younoszai A. Tricuspid annu-

lar plane systolic excursion is preserved in young patients

with pulmonary hypertension except when associated with

repaired congenital heart disease. Eur Heart J cardiovascular

Imaging 2017; 18: 459–466.
322. Levy PT, Patel MD, Groh G, et al. Pulmonary Artery

Acceleration Time Provides a Reliable Estimate of Invasive

Pulmonary Hemodynamics in Children. Journal of the

American Society of Echocardiography : official publication

of the American Society of Echocardiography 2016; 29:

1056–1065.

323. Takatsuki S, Nakayama T, Jone PN, et al. Tissue Doppler

imaging predicts adverse outcome in children with idiopathic

pulmonary arterial hypertension. The Journal of pediatrics

2012; 161: 1126–1131.
324. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations

for cardiac chamber quantification by echocardiography in

adults: an update from the American Society of

Echocardiography and the European Association of

Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28:

1–39 e14.
325. Jone PN, Hinzman J, Wagner BD, et al. Right ventricular to

left ventricular diameter ratio at end-systole in evaluating

outcomes in children with pulmonary hypertension. Journal

of the American Society of Echocardiography : official publi-

cation of the American Society of Echocardiography 2014; 27:

172–178.

326. Jone PN, Schafer M, Pan Z, et al. 3D echocardiographic

evaluation of right ventricular function and strain: a prognos-

tic study in paediatric pulmonary hypertension. Eur Heart J

Cardiovasc Imaging 2018; 19: 1026–1033.
327. Friesen RM, Schafer M, Burkett DA, et al. Right Ventricular

Tissue Doppler Myocardial Performance Index in Children

with Pulmonary Hypertension: Relation to Invasive

Hemodynamics. Pediatric cardiology 2018; 39: 98–104.

Pulmonary Circulation Volume 9 Number 3 | 31



328. Himebauch AS, Yehya N, Wang Y, et al. Early Right
Ventricular Systolic Dysfunction and Pulmonary
Hypertension Are Associated With Worse Outcomes in

Pediatric Acute Respiratory Distress Syndrome. Crit Care
Med 2018; 46: e1055–e1062.

329. Burkett DA, Slorach C, Patel SS, et al. Left Ventricular
Myocardial Function in Children With Pulmonary
Hypertension: Relation to Right Ventricular Performance

and Hemodynamics. Circulation Cardiovascular imaging
2015; 8: 2.

32 | PVRI imaging statement Kiely et al.


	Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI)
	Authors

	untitled

