Neuromyelitis optica (devic’s disease) in a 10 years old boy.

Dr.Farida Jan
Aga Khan University Hospital Karachi, Pakistan, drfaridajan@hotmail.com

Amber Shabir
Aga Khan University, Karachi

Shahnaz Ibrahim
Aga Khan University, Karachi

Follow this and additional works at: http://ecommons.aku.edu/pjns
Part of the Neurology Commons

Recommended Citation
Jan, Dr.Farida; Shabir, Amber; and Ibrahim, Shahnaz (2016) "Neuromyelitis optica (devic’s disease) in a 10 years old boy," Pakistan Journal of Neurological Sciences (PJNS): Vol. 11 : Iss. 2 , Article 5.
Available at: http://ecommons.aku.edu/pjns/vol11/iss2/5
NEUROMYELITIS OPTICA (DEVIC’S DISEASE) IN A 10 YEARS OLD BOY.

ABSTRACT

Neuromyelitis optica (NMO) also known as Devic’s disease is an acute demyelinating disorder combined with optic neuritis and transverse myelitis. A 10 years old boy presented in the ER with the complaints of fever and back pain for past 10 days and inability to walk for 6-7 days. He had developed urinary retention and constipation for the past 5 days along with abdominal distension. There was also blurring of vision in the left eye with only light perception and rapid afferent papillary defect was present while the right eye was normal. The provisional diagnosis was Transverse myelitis vs Neuromyelitis optica (NMO). CSF revealed TLC 4, protein 54mg/dl, glucose 66mg/dl. Oligoclonal bands were negative. There was raised CPK. Visual evoked potential (VEP) showed prolongation of P100 latency along with amplitude loss, in left eye. His MRI spine showed extensive involvement of the spinal cord especially the cervical cord and there was no involvement of the brain. Left eye had optic neuritis. He was treated with steroid pulse therapy and later Plasmapheresis and was discharged home on azathioprine with no motor deficit but the visual loss was irreversible.

KEY WORDS: optic neuritis, myelitis, Devic’s disease

INTRODUCTION

Neuromyelitis optica (NMO) also known as Devic’s disease is an acute demyelinating disorder comprising of optic neuritis and transverse myelitis. 1 NMO predominantly affects middle aged adults, while case reports from the pediatric population have been increasing in past few years. A recent case series of pediatric NMO revealed strong female predominance. NMO has specific diagnostic criteria and unique pathologic features when compared with multiple sclerosis (MS). 2 Pediatric NMO has comparatively poor visual and motor outcomes. Traditionally, the term NMO was applied to those patients who experienced a monophasic event consisting of bilateral simultaneous optic neuritis and acute myelitis. 3

CASE REPORT

A 10 years old boy presented in the ER with the complaints of fever and back pain for past 10 days and inability to walk for 6-7 days. He had developed urinary retention and constipation for the past 5 days along with abdominal distension. For the past two days he had been complaining of blurring of vision in the left eye. There was no history of any recent viral illness, vaccination or trauma. He had been to a hospital where he was catheterized and started on broad spectrum antibiotics for the past 4 days but there was no improvement they came to this hospital. His birth and development was normal and he was a student of class III. There was no history of any allergies or surgery. Immunization was up to date. Family history included two sisters and three brothers who were well and healthy. There was no family history for any neurological disease or unexplained visual loss. On examination the patient was fully alert, interactive for any neurological disease or unexplained visual loss. He had no neurological deficit in the lower limbs though his bladder was full with abdominal distension. For the past two days he had been complaining of blurring of vision in the left eye. There was no history of any recent viral illness, vaccination or trauma. He had been to a hospital...
A 10 years old boy presented in the ER with the complaint of fever and back pain for past 10 days and inability to walk for 6-7 days. He had developed urinary retention and constipation for the past 5 days along with abdominal distension. For the past two days he had been complaining of blurring of vision in the left eye. There was no history of any recent viral illness, no history of any neurological illness. His left eye had only light perception and showed rapid afferent papillary defect while the right eye was normal. The provisional diagnosis was Transverse myelitis vs Neuromyelitis optica (NMO). Complete blood count and basic metabolic workup was normal. Inflammatory markers (C-reactive proteins and Erythrocyte sedimentation rate) were within normal limits. CSF revealed TLC 4, protein 54mg/dl, glucose 66mg/dl. Oligoclonal bands were negative. There was raised CPK. Visual evoked potential (VEP) showed prolongation of P100 latency along with amplitude loss, in left eye. MRI revealed multiple abnormal T2 hyper intense signals showing post contrast enhancement almost along on the entire spinal cord. These were predominately identified in the cervical region of the spinal cord along with swelling of the cord in this region. Overall appearance was suggestive of transverse myelitis. Bilateral globes and optic nerve appeared unremarkable. The grey matter and white matter appeared normal. A diagnosis of Devic’s disease was made and the patient was treated initially with intravenous methyl prednisolone (30 mg/kg/day for five days) followed by gradually tapered oral steroids. Condition of child remained static; therefore Plasmapheresis was done for 5 days. Azathioprine 2 mg/kg/day was added and limb physiotherapy started. Clinical outcome was favorable with significant reversible of power and function of limbs.

Discussion

By definition NMO is a monophasic or relapsing disorder of the optic nerves and the spinal cord, without evidence of white matter dysfunction of the brain, brainstem or cerebellum, with the exception of hypothalamic and lower brainstem dysfunction. Optic nerve and spinal cord dysfunction might be partial and it can be unilateral or even subclinical, with an abnormal visual evoked potential but no clinical signs. Partial forms of NMO are also called high-risk NMO, in which isolated transverse myelitis or optic neuritis occurs. The optico-spinal form of MS is quite similar to NMO. Hence, it appears to be a spectrum of NMO, with various degrees of involvement but course of NMO is more acute, sometimes fulminant. In contrast with the optic neuritis of MS, NMO optic neuritis can be severe, fulminant and devastating with very poor prognosis. Brain lesions have been observed in children; in one series 68% of NMO-IgG seropositive children and among them 45% had brain symptoms which corresponding to the MRI abnormalities. In contrast to MS, attacks in NMO commonly spare the brain in the early stages. Hence, normal brain MRI is a common finding at the onset of NMO, so on follow-up scans must be performed periodically for development of later lesions in the course of the disease.

Lesions in the Spinal cord are large, and extends over three or more vertebral segments in about 85-90% of patients and are mostly located in the cervical and upper thoracic region. The current revised diagnostic criteria of NMO tells the presence of acute optic neuritis and myelitis with at least two of the three supportive criteria, which consist of spinal cord MRI lesion extending over three consecutive vertebral segments, brain MRI lesion, which does not meet the diagnostic criteria for multiple sclerosis, and NMO-IgG seropositive status. Our patient had no systemic disorder or non-organ-specific autoimmune disorder or autoantibody. At the time of the left eye’s involvement, our patient fulfilled the diagnostic criteria. CSF examination of our patient showed no pleocytosis. Oligoclonal bands of IgG in the CSF are frequently seen in MS and these are detected in 15-30% of patients with NMO. Oligoclonal bands were negative in our patient’s CSF examination. A number of modalities have been tried but there is no proven treatment protocol as yet either in the acute attacks or in the long term remissions in NMO. Hence Intravenous corticosteroid therapy is the commonly preferred initial treatment for acute attacks. A total of 50% of the patients, those who are unresponsive to corticosteroid treatment may benefit from plasmapheresis. The efficacy of immunomodulatory therapies (Beta-interferon) have not been proven yet. However, immunosuppressive therapy (oral azathioprine, associated with or without oral steroids; intravenous immunoglobulin; Rituximab) is an accepted method to provide clinical remission of corticosteroid resistant NMO. Our patient received both steroid pulse therapy and Plasmapheresis and was sent home on oral steroids and azathioprine. He became fully mobile with no neurological deficit in the lower limbs though his vision was lost in the left eye.

Conclusion

NMO is a rare but severe devastating disease affecting vision and nervous system resulting in blindness and paraplegia in children. Hence an early intervention with the appropriate treatment modality in patients suspected with NMO decides on the favorable outcome from an acute episode.
A 10 years old boy presented in the ER with the inability to walk for 6-7 days. He had developed urinary incontinence and had a mild decrease in vision. His family history included two sisters and three brothers; in one series 68% of NMO-IgG seropositive children and among them 45% had brain symptoms whereas 95% of IgG-NMO children; in one series 68% of NMO-IgG seropositive children had brain symptoms. He was afebrile, with stable vitals. On examination the patient was fully alert, interactive and had preserved reflexes. The cranial nerves were intact except for decrement of vision in the left eye; visual acuity was 15/15 and higher mental functions were intact. Proprioception were intact. There were no signs of pain, temperature, vibration and hearing. Rectal examination showed normal bowel tone with normal stool. On abdominal examination, there was no shifting dullness or organomegaly. At the level of umbilicus, there was no fluid wave. The liver span was 15 cm. On respiratory examination, there was no respiratory distress. The chest X-ray showed no abnormality. He had a normal heart rate and blood pressure. The neck examination showed neck stiffness on flexion and extension. The cerebrospinal fluid (CSF) examination revealed TLC 4, protein 54 mg/dl, glucose 66 mg/dl. The electroencephalogram was normal. Complete blood count showed negative markers (C-reactive proteins and Erythrocyte sedimentation rate). The biochemistry and renal parameters were normal. The provisional diagnosis was Transverse myelitis with at least two of the three supportive criteria, which consist of spinal cord MRI lesion extending over three consecutive vertebral segments, of later lesions in the course of the disease. Lesions in the Spinal cord are large, and extends over three or six vertebral segments. The entire spine shows post contrast enhancement with marked hyper intense signals in the cervical cord.

Fig 3. Shows transverse section of the cervical spine with hyper intensities more marked posteriorly as compared to anterior cord.
References

Conflict of interest: Author declares no conflict of interest.
Funding disclosure: Nil

Author’s contribution:

Farida Jan: Study concept and design, data collection, data analysis, manuscript writing, manuscript review
Amber Shabir: data collection, data analysis, manuscript writing, manuscript review
Shahnaz Ibrahim: data analysis, manuscript writing, manuscript review