2017

Practical guide and atlas for the diagnosis of fungal infections

Afia Zafar
Aga Khan University, afia.zafar@aku.edu

Kauser Jabeen
Aga Khan University, kausar.jabeen@aku.edu

Joveria Farooqi
Aga Khan University, joveria.farooqi@aku.edu

Follow this and additional works at: https://ecommons.aku.edu/books
Part of the Pathology Commons

Recommended Citation
Available at: https://ecommons.aku.edu/books/62
Practical Guide and Atlas for the

Diagnosis of Fungal Infections

Editor
Afia Zafar

Associate Editors
Kauser Jabeen & Joveria Farooqi
Practical Guide and Atlas for the Diagnosis of Fungal Infections

Editor
Afia Zafar
MBBS, DCP, FRCPath

Associate Editors
Kauser Jabeen
MBBS, FCPS, MSc (Medical Mycology)

Joveria Farooqi
MBBS, FCPS, MSc (Epidemiology and Biostatistics)
Foreword

I am honoured to be asked to write the Foreword for this Practical Guide and Atlas for the Diagnosis of Fungal Infections. Fungal infections are ubiquitous and often result in much misery and suffering. Immunocompromised patients in particular are at risk of such infections. Advances in healthcare resulting in an increasing population of immunocompromised individuals further exacerbate the risk of fungal infection related morbidity and mortality.

These infections, however, are frequently underdiagnosed and hence under-recognised. The true burden of fungal infections particularly in resource-limited countries is thus unknown. Without such baseline information it is difficult to assess the impact that such infections may have on the health of the population and to develop strategies for their control. There is thus a great need for tools that can enhance capacity for the diagnosis and control of fungal diseases.

This book written by experienced and distinguished experts in the field presents a comprehensive and a very practical approach to the laboratory diagnosis of fungal infections. The excellent illustrations and photographs accompanied by stepwise practical guidance will assist professionals and students in strengthening diagnosis of such infections. They further provide a much-needed guide to the spectrum of fungi associated with infections in this part of the world.

As the number of antifungal agents available and their spectrum of activity increases, so does the need to determine the susceptibility of isolates to these agents. Antifungal susceptibility testing is not widespread in resource-limited settings. Thus the chapter on antifungal susceptibility testing provides a detailed account of currently available susceptibility methodologies to facilitate their implementation. This book furthermore touches upon newer techniques that are being introduced for the diagnosis of fungal diseases. It also emphasises the importance of safety precautions required in mycology laboratories.

Written at the behest of many students and colleagues requesting guidance in developing capacity for diagnostic mycology, this book is timely and much needed. Based on the authors own experience in establishing diagnostic mycology in a developing country, it provides clear guidance in a very readable form. It will hopefully contribute toward enhancing the detection of fungal diseases and increasing the cadre of enthusiastic medical mycologists across the globe.

Rumina Hasan
Abdulaziz Hussainali Shariff Professor
MBBS, PhD, FRCPath

© 2017 by Aga Khan University.

All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher.

This publication is fully supported by a grant received from the United States Department of State and the Higher Education Commission, Pakistan through the Pakistan-U.S. Science and Technology Cooperation Program.

For all queries, please write to:
Department of Pathology and Laboratory Medicine
Aga Khan University
Stadium Road, P.O. Box 3500
Karachi 74800, Pakistan
Fax: +92 21 3493 4294; 3493 2095
Tel: +92 21 3486 4530 or 3493 0051 ext. 4530

Acknowledgments

Compiling an atlas of clinically-relevant fungi in a country such as Pakistan is no small undertaking. It is a consequence of hard labour: after conducting eight hands-on workshops in fungal disease diagnosis and a six-year systematic surveillance of prevalent invasive mycoses in Pakistan, we were inspired to compile this collection as an atlas. The eventual publication of this material has been fully supported by a grant received from the U.S. Department of State and the Higher Education Commission, Pakistan through the Pakistan-U.S. Science and Technology Cooperation Program.

This effort would have been fruitless without a team of committed individuals working with us.

Dr Mary E. Brandt, then Chief of the Mycotic Diseases Branch at the Centers for Disease Control and Prevention, Atlanta, wholehearted collaboration made it possible for us to gain the direction we needed to develop the training material.

Our team including our talented scientific photographer Faisal Riaz Malik, our dedicated research officer Raunaq Mahboob, and mycology bench technologists Fahim Naqvi, Samia Tariq, Sidra Laiq and Kanwal Iqbal helped us achieve this daunting task, from concept to publication.

Mention must be made of our postgraduate trainees, especially Pushpa Bhawan Mal and Fizza Farooqi, whose enthusiasm ensured that all microscopic findings, colony morphologies and samples from patients were recorded for posterity. The trainees even created a group on social media for this very purpose and became quite proficient at taking photographs with cellphone cameras.

This Atlas would not have been possible without the microbiology faculty at the Aga Khan University, who both contributed to and offered endless support in producing this publication.

We also want to thank all the clinicians, infectious diseases consultants, medical microbiologists, including our own alumni, dermatologists, radiologists and other colleagues who contributed clinical and radiological images from all over Pakistan, and obtained consent from their patients on our behalf.

Notable among them are Dr Amjad Mahboob (Gajju Khan Medical College, Swabi), Dr Summiya Nizamuddin and Dr Nasim Akhtar (Shaukat Khanum Memorial Hospital, Lahore), Dr Aysha Ilyas (National Medical Center, Karachi), Dr Samreen Sarfaraz and Dr Fivzia Harekar (The Indus Hospital, Karachi) who sent specimens and isolates to our lab for diagnosis and identification, which enriched our collection and broadened our experience.

We are also grateful to Dr Nadia Jajja for her outstanding editorial skills that helped us polish this Atlas and prepare it for publication.

Last but definitely not the least, we are greatly indebted to the Aga Khan University for providing an environment which is so amenable to academic pursuits that we were able to bring forth this compilation.

Afia Zafar
Editor
Introduction: Why You Need This Atlas

Laboratory diagnosis of fungal infections remains challenging in South East Asia as it is a neglected field in most diagnostic centres in the developing world.

Initial microscopic examination of clinical specimens for the presence of fungal elements followed by growth and eventual identification of isolates up to genus and species levels are very basic and important services that must be provided by any clinical microbiology laboratory. These services have considerable impact on selection of appropriate antifungal therapy and ultimate reduction in morbidity and mortality.

With the realisation of scarcity of this service and expertise in Pakistan, our group decided to produce an atlas for use in clinical laboratories to diagnose fungal infections as well as to improve understanding and skills of clinical laboratory technologists, residents and junior consultants.

The editors and authors are hopeful that this atlas will aid in the identification and reporting of fungi in day-to-day clinical laboratory practice.

Contributors

Afia Zafar
Professor & Consultant Microbiologist
Pathology & Laboratory Medicine
Aga Khan University, Karachi

Zafar Sajjad
Professor & Consultant Radiologist
Radiology
Aga Khan University, Karachi

Kauser Jabeen
Associate Professor & Consultant Microbiologist
Pathology & Laboratory Medicine
Aga Khan University, Karachi

Erum Khan
Associate Professor & Consultant Microbiologist
Pathology & Laboratory Medicine
Aga Khan University, Karachi

Joveria Farooqi
Assistant Professor & Consultant Microbiologist
Pathology & Laboratory Medicine
Aga Khan University, Karachi

Seema Irfan
Assistant Professor & Consultant Microbiologist
Pathology & Laboratory Medicine
Aga Khan University, Karachi

Saadia Tabassum
Assistant Professor & Consultant Dermatologist
Medicine
Aga Khan University, Karachi

Sadia Shakoor
Assistant Professor & Consultant Microbiologist
Pathology & Laboratory Medicine
Aga Khan University, Karachi

Mohammad Zeeshan
Assistant Professor & Consultant Microbiologist
Pathology & Laboratory Medicine
Aga Khan University, Karachi

Imran Ahmed
Senior Instructor & Consultant Microbiologist
Pathology & Laboratory Medicine
Aga Khan University, Karachi
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFPA</td>
<td>Aspergillus flavus and Aspergillus parasiticus agar</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BHI</td>
<td>Brain heart infusion</td>
</tr>
<tr>
<td>BGGY</td>
<td>Bismuth glycine glucose yeast agar</td>
</tr>
<tr>
<td>BSC</td>
<td>Biological safety cabinet</td>
</tr>
<tr>
<td>BSL-3</td>
<td>Biosafety Level 3 laboratory</td>
</tr>
<tr>
<td>CAP</td>
<td>College of American Pathologists</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical and Laboratory Standards Institute</td>
</tr>
<tr>
<td>CMT</td>
<td>Cornmeal Tween-80 agar</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>DTM</td>
<td>Dermatophyte test medium</td>
</tr>
<tr>
<td>EAPCRI</td>
<td>European Aspergillus PCR Initiative</td>
</tr>
<tr>
<td>EUCAST</td>
<td>European Committee on Antimicrobial Susceptibility Testing</td>
</tr>
<tr>
<td>FDA</td>
<td>U.S. Food and Drug Administration</td>
</tr>
<tr>
<td>H&E stain</td>
<td>Haematoxylin and eosin stain</td>
</tr>
<tr>
<td>IA</td>
<td>Invasive aspergillosis</td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>LAI</td>
<td>Laboratory-acquired infection</td>
</tr>
<tr>
<td>LPCB</td>
<td>Lactophenol cotton blue</td>
</tr>
<tr>
<td>MEA</td>
<td>Malt extract agar</td>
</tr>
<tr>
<td>MHA</td>
<td>Müller-Hinton agar</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum inhibitory concentration</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material safety data sheet</td>
</tr>
<tr>
<td>MTB</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>PAF</td>
<td>Partial acid-fast</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato dextrose agar</td>
</tr>
<tr>
<td>PNA-FISH</td>
<td>Peptide nucleic acid–fluorescence in situ hybridisation</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal protective equipment</td>
</tr>
<tr>
<td>PT</td>
<td>Proficiency testing</td>
</tr>
<tr>
<td>QC</td>
<td>Quality control</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute medium</td>
</tr>
<tr>
<td>SBA</td>
<td>Sheep blood agar</td>
</tr>
<tr>
<td>SDA</td>
<td>Sabouraud's dextrose agar</td>
</tr>
<tr>
<td>SDAC</td>
<td>Sabouraud's dextrose agar with chloramphenicol</td>
</tr>
<tr>
<td>SOPs</td>
<td>Standard operating procedures</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Specimen Collection, Transport and Processing</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>2</td>
</tr>
<tr>
<td>Specimen Collection and Transport</td>
<td>2</td>
</tr>
<tr>
<td>Specimen Processing and Microscopy</td>
<td>5</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Fungal Media and Cultures</td>
</tr>
<tr>
<td>Fungal Media</td>
<td>10</td>
</tr>
<tr>
<td>Microscopic Examination of Culture</td>
<td>18</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Diagnosis of Fungal Infections: Clinical Lesions, Microscopic Examination and Culture</td>
</tr>
<tr>
<td>Candida</td>
<td>23</td>
</tr>
<tr>
<td>Cryptococcus neoformans</td>
<td>34</td>
</tr>
<tr>
<td>Rare yeasts</td>
<td>38</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>42</td>
</tr>
<tr>
<td>Mucoraceous Molds</td>
<td>50</td>
</tr>
<tr>
<td>Dermatophytes</td>
<td>55</td>
</tr>
<tr>
<td>Hyaline Molds</td>
<td>63</td>
</tr>
<tr>
<td>Dematiaceous Molds and Melanised Fungi</td>
<td>70</td>
</tr>
</tbody>
</table>
SPECIMEN COLLECTION, TRANSPORT AND PROCESSING
Specimen Collection, Transport and Processing

Kaiser Jabeen

The visualisation of fungal elements in invasive and sterile specimens is still considered the gold standard for diagnosis of fungal infection. Appropriate specimen collection, transport and processing are essential steps to increase the diagnostic sensitivity of these conventional tools.

Prerequisites

- Always consult the SOP manual of the diagnostic laboratory for the particular specimen and test.
- Aim to collect sample in a sterile kit under aseptic conditions.
- Ensure that you have the appropriate swab kit (alcohol swabs, gloves, transportation tube and media).
- If it is a special or non-routine test, coordinate with the laboratory about specific requirements for collection and handling.
- Document the following:
 - Patient identifiers (e.g. name, age, medical record number);
 - Sample identifiers (e.g. swab, smear, scrape, urine, blood);
 - Location and type (e.g. lower limb wound, nail scraping, hair sample);
 - Date and time of collection;
 - Deviations from standard protocol during collection (e.g. not performed under aseptic conditions if large traumatic wound); and
 - Relevant clinical information including recent and current antimicrobial therapy.
- Ensure that adequate material (at least 2 ml of bodily fluids) is sent to the laboratory for proper yield. An inadequate specimen may lead to a false negative result.
- Transport the sample within 2 hours and process promptly for optimum recovery of fungi.
- If a delay is anticipated, refrigerate specimens at 4°C (exceptions: blood, bone marrow, CSF and sterile tissues should be stored at 35-37°C).
- Ideally, collect specimens as soon as symptoms appear and whenever possible before antifungal therapy is initiated.
- Staff must take all precautions to avoid inadvertent contamination of sample as well as for their own personal safety.

Specimen Collection and Transport

Swabs and Scrapings

Eye Swab and Scraping

- Purse and discharge samples can be collected with a cotton wool swab and sent using standard precautions to the lab.
- Due to the sensitivity of the region and serious consequences of error, only an experienced ophthalmologist collects eye samples (e.g. corneal scrapings, intraocular fluid aspirate and swabs).
- For corneal scrapings, inoculate media plates and prepare slides at the patient’s side. Always contact the laboratory to obtain suitable media prior to the procedure. Alternatively, send corneal scrapings directly to the laboratory.
- Intraocular fluid (vitreous and aqueous) is collected using specialised equipment in the operating room.
- If sample is insufficient to perform both smear and inoculation of plates, give priority to culture.
- For intraocular fluids, inoculate media plates and prepare slides at the patient's side. Always contact the laboratory.
- Due to the sensitivity of the region and serious consequences of error, only an experienced ophthalmologist collects eye samples (e.g. corneal scrapings, intraocular fluid aspirate and swabs).
- Intraocular fluid (vitreous and aqueous) is collected using specialised equipment in the operating room.
- If sample is insufficient to perform both smear and inoculation of plates, give priority to culture.
- For intraocular fluids, inoculate media plates and prepare slides at the patient's side. Always contact the laboratory.

Ear Swab and Scraping

- A physician collects samples from outer and middle ear. Skin scrapings from the external auditory canal are preferred. Use a sterile swab stick to collect exudates or debris.
- For deeper ear infections and to avoid damage to the ear drum, an ENT surgeon or experienced physician should use a speculum to draw specimen.
- A physician collects samples from outer and middle ear. Skin scrapings from the external auditory canal are preferred. Use a sterile swab stick to collect exudates or debris.
- For deeper ear infections and to avoid damage to the ear drum, an ENT surgeon or experienced physician should use a speculum to draw specimen.

Low and High Vaginal Swabs

- A low vaginal swab (LVS) can be collected by the gynaecologist or by the patient herself after receiving proper instructions from the physician.
- A high vaginal swab (HVS) using a speculum and swab stick. A smear can be made at the same time.

Oral Swab

- Using a sterile oral swab collect exudate, pus or debris from the lesion or inflamed area within the oral cavity (mucosal surface, lips, inner side of cheek or back of throat).
- A tongue depressor/spatula assists visualisation and avoids contamination from other parts of the mouth.

Low and High Vaginal Swabs

- All mucous discharge should be cleared prior to sample collection.
- In adults, two samples (10 ml each) are submitted in an aerobic and anaerobic blood culture bottle.
- In children, a single sample (4-10 ml) is submitted in a paediatric blood culture bottle.

Body Fluids

Blood

- A phlebotomist, physician or nurse can collect an intravenous sample after skin disinfection.
- In adults, two samples (10 ml each) are submitted in an aerobic and anaerobic blood culture bottle.
- In children, a single sample (4-10 ml) is submitted in a paediatric blood culture bottle.

Urine

- Midstream sample is collected by the patient who should be instructed to:
 - Collect 10-20 ml midstream urine in a sterile container during the first morning urination.
 - Void the first portion of the urine, and then catch the rest in the container without stopping the stream.
 - Ensure hand hygiene prior to collection by washing hands thoroughly with soap and water, and then drying with a paper towel. Females should spread labia and clean the urethral meatus in a front-to-back direction.
 - Catheter sample is collected by a physician or nurse.
 - Clamp hub of Foley’s catheter distally.
 - Clean hub sequentially with pyodine and 70% alcohol.
 - Aspirate collected urine from the hub with a sterile needle and syringe.
 - A 24-hour urine collection and Foley's catheter tip samples are not acceptable.

Tissue

Biopsy

- Surgical collection and punch biopsies may be used for skin lesions.
- If grains are visible to the naked eye, collect aseptically for smear and culture.
- Sterile normal saline should be added to the tissue to prevent drying (just enough to keep tissue moist).

Exudates, Pus and Drainage

- A physician or staff nurse can draw sample from an open wound, ulcer or abscess.
- Always sample a representative part of the lesion.
- If possible, send several swab samples to the laboratory to allow preparation of fungal smear and inoculation of culture plates.
Open Wound
- Use a sterile syringe to aspirate the wound deeply or alternatively use a sterile swab stick to collect sample, especially at base and advancing margins.
- Do not swab dry crusted areas as it is unlikely to yield the causative pathogen.

Ulcer
- Prior to specimen collection from an ulcer, remove all debris and thoroughly wash with normal saline.
- Draw a biopsy specimen from the edge of the wound or, preferably, aspirate with a needle.

Abscess
- Clean skin with 70% alcohol and palpate point of highest fluctuation.
- Insert sterile syringe needle and aspirate fluid from the most fluctuant point.
- If needed, obtain sample from base of lesion and abscess wall (scrapings, punch biopsy).
- Discard syringe needle before transportation to laboratory.

Respiratory Tract Secretions

Sputum
- Patient submits the first morning expectorated sample (optimal) with the following instructions:
 - Clean mouth with several rinses of sterile saline or water.
 - Cough out 2-5 ml of sputum (not saliva) in a wide-mouthed sterile container.
 - In case of dry cough, perform sputum induction with hypertonic saline nebulisation.
 - Acceptability of sputum is determined with a Gram stained smear (pus cells >25/LPF, epithelial cells <10/HPF) and only representative samples are accepted.
 - 24-hour sputum collections are not acceptable.

Tracheal Aspirate
- Tracheal aspirates are collected through an endotracheal tube and are subject to the same limitations as sputum specimens.

Non-Directed Bronchoalveolar Lavage
- This method provides a lower respiratory tract sample without the need for bronchoscopy.
 - A trained physician passes a suction catheter down the endotracheal tube until resistance is met.
 - Inject an aliquot of sterile saline and then aspirate at least 1 ml of secretions.
 - Non-directed techniques have been found to give results comparable to bronchoscopic methods.

Dermatological Specimens

Skin Scrapings
- Clean skin with 70% alcohol.
- Scrape edges of lesion (as edge has greatest amount of viable fungus) with a blunt scalpel blade.
- Collect skin scales in a sterile petri dish or similar wide-mouthed container or alternatively, skin scrapings may be collected in a clean, dry piece of paper folded securely with Scotch tape and labelled properly.
- If a skin scraping does not yield sufficient material, then a swab or Scotch tape could be pressed on the lesion.

Nail
- Clean nail with 70% alcohol.
- Examine for damaged, discoloured, brittle or dystrophic area.
- Material should be taken from the affected areas.
- Entire thickness of the damaged nail should be cut as far back as possible. Any crumbly material or material under the nail should be collected and sent in a sterile container.
- If skin lesions are present they should be scraped and the material collected should be sent separately.

Hair and Scalp
- A Wood’s light, if available, may be helpful in selecting specimens.
- Pluck broken or lustreless hairs from periphery of lesion. Scrape scalp from edge of hair loss area.
- Do not cut hair.
- If hair are broken off (endothrix), it often may be necessary to scrape the coiled hair stubble from the scalp with a sterile blade or slide edge, rather than plucking with tweezers.
- In piedra infections, cut infected hair with scissors.
- Submit specimen to laboratory in sterile petri dish.

Specimen Processing and Microscopy
- Ensure that at the time of receipt of sample, documentation is complete, including provision of relevant history for interpretation of results.
- Determine acceptability and adequacy of specimen.
 - If specimen collection did not comply with protocol or sample is inadequate for multiple tests to be performed simultaneously, immediately inform referring physician.
 - Prioritise performing sensitivity and culture to other tests, except for nails and skin scrapings from suspected tinea versicolor.
 - Visually inspect the specimen to observe necrosis, purulence and grains.
- To improve sensitivity, use most purulent, necrotic and blackened portion of specimen for smear preparation and culture inoculation.
- Inoculate swab specimens directly on the surface of appropriate media.
- Issue reports of fungal smear on the presence and description of fungal elements the same day.
- Positive culture results of samples from CSF, sterile body fluids, tissues and other significant sites should be informed to clinicians as soon as possible.
Box 1.1: Factors increasing diagnostic sensitivity

- Examination of a large amount of tissue or other materials
- Selection of necrotic, purulent or caseous material
- Use of optical brighteners
- Centrifugation
- Development of expertise

Table 1.1: Specimen processing requirements and appropriate microscopy techniques

<table>
<thead>
<tr>
<th>Specimen type</th>
<th>Specimen processing</th>
<th>Direct microscopy techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood culture</td>
<td>• Incubate 2 bottles at 37°C in an automated system.</td>
<td>• Gram stain</td>
</tr>
<tr>
<td></td>
<td>• Perform microscopy and subculture once positive.</td>
<td>• 10% KOH wet mount</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• India ink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PAF stain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Centrifuge</td>
</tr>
<tr>
<td>CSF and other sterile</td>
<td>• Centrifuge CSF in sterile tube at 2000-2500 rpm for 10 minutes.</td>
<td>• Gram stain</td>
</tr>
<tr>
<td>body fluids</td>
<td>• Pour the supernatant back into the collection container and store for antigen detection.</td>
<td>• 10% KOH wet mount</td>
</tr>
<tr>
<td></td>
<td>• The pellet is used for smear and wet mount for subsequent culture.</td>
<td>• India ink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PAF stain</td>
</tr>
<tr>
<td>Tissue and Swabs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biopsy</td>
<td>• Mince using a sterile blade after placing tissue in a sterile petri plate (grinding will inhibit growth of mucoraceous molds).</td>
<td>• Gram stain</td>
</tr>
<tr>
<td></td>
<td>• Incoculate tissue on culture plates.</td>
<td>• 10% KOH wet mount</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• India ink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PAF stain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Calcofluor white stain</td>
</tr>
<tr>
<td>Swabs</td>
<td>• Directly inoculate onto media.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• If there is insufficient material, a small amount of normal saline can be added to re-suspend material.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• If granules are visualised, wash, centrifuge and crush for processing.</td>
<td></td>
</tr>
<tr>
<td>Respiratory tract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>secretions</td>
<td>• Mix equal volume of sputasol and vortex till specimen is liquefied.</td>
<td>• Gram stain</td>
</tr>
<tr>
<td>Sputum and tracheal</td>
<td>• Centrifuge at 1200 g for 10 minutes.</td>
<td>• 10% KOH wet mount</td>
</tr>
<tr>
<td>aspirates</td>
<td>• Discard supernatant and re-suspend centrifuged deposit.</td>
<td>• India ink</td>
</tr>
<tr>
<td></td>
<td>• Use 1 drop of sediment for microscopy and media inoculation.</td>
<td>• PAF stain</td>
</tr>
<tr>
<td></td>
<td>• Alternatively, directly inoculate on culture media, without pre-treatment.</td>
<td>• Calcofluor white stain</td>
</tr>
</tbody>
</table>

Table 1.2: Stains for microscopic examination of clinical material

<table>
<thead>
<tr>
<th>Principle</th>
<th>Procedure</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram stain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stains walls containing protein-sugar complexes called peptidoglycan. Typically have low lipid content. Gram positive fungi stain violet. Gram negative fungi decolourise and stain pink with safranin.</td>
<td>• Heat-fix the smear.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Apply crystal violet stain to the smear for 30 seconds. Drain stain and wash with water.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add Gram’s Iodine for 30 seconds and the drain excess.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Decolourise with 95% ethyl alcohol.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Counterstain with safranin for 30 seconds and then drain excess.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Rinse and allow to air dry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Examine under microscope.</td>
</tr>
<tr>
<td>10% potassium hydroxide (KOH) wet mount</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolves keratin and proteinaceous components of tissue. Makes fungal elements prominent.</td>
<td>• Place specimen on slide.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add a drop of 10% KOH.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Apply coverslip and gently warm the slide over a flame or warmer. Alternatively leave the slide at room temperature for 10 minutes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gently press the coverslip to spread the already softened tissue evenly on the slide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Examine under a microscope.</td>
</tr>
</tbody>
</table>

Table 1.3: Specimen Collection, Transport and Processing
Calcofluor white stain

- Binds to chitin and cellulose in fungal cell wall. Better visualisation of fungal elements than 10% KOH. Fungal elements appear bright apple green.

- **Preparation:**
 - Place a small drop of India ink on a slide.
 - Fluid and CSF should be centrifuged and a small amount of this should be mixed with India ink.
 - In thick specimens like pus and sputum a drop of 10% KOH along with India ink improves visualisation.
 - Leukocytes, fat droplets, and tissue cells may look like C. neoformans cells. Leukocytes and tissue cells can be dissolved by adding a drop of 10% KOH.

- **Positive control:** C. neoformans
- **Negative control:** C. albicans

India ink

- Negative staining method. Used to detect encapsulated strains of *Cryptococcus*. This stain could also be performed with suspected *Cryptococcus* colonies. Small portion of isolated colony should be emulsified in India ink. Some strains of *C. neoformans*, as well as other *Cryptococcus* may not produce discernible capsules in vitro.

- **Preparation:**
 - Place a small drop of India ink on a slide.
 - Fluid and CSF should be centrifuged and a small amount of this should be mixed with India ink.
 - In thick specimens like pus and sputum a drop of 10% KOH along with India ink improves visualisation.
 - Leukocytes, fat droplets, and tissue cells may look like *C. neoformans* cells. Leukocytes and tissue cells can be dissolved by adding a drop of 10% KOH.

- **Positive control:** C. neoformans
- **Negative control:** C. albicans

Acid-fast stain (Ziehl-Neelsen stain)

- Mycolic acid is a waxy lipid that makes cell walls highly durable. Acid-fast walls only stain with carbol-fuschin stain after being heat-treated and do not decolourise with acid-alcohol solvent.

- **Preparation:**
 - Prepare heat-fixed fungal smear.
 - Stain with carbol fuchsin.
 - Heat stain until vapour just begins to rise (60°C).
 - Allow the heated stain to remain on the slide for 5 minutes. Wash stain with distilled water.
 - Cover the smear with 3% acid alcohol for 5 minutes or until the smear is sufficiently decolourised. Wash with distilled water.
 - Cover the smear with malachite green stain for 1-2 minutes, using longer time when the smear is thin. Wash off stain with distilled water.
 - Allow to air dry.
 - Examine the smear under a microscope.

- **Positive control:** M. tuberculosis
- **Negative control:** E. coli

Lactophenol cotton blue

- Used for visualisation of fungal elements and structures. Mainly performed from fungal colonies and used for identification. In case of non-availability of Calcofluor white stain, this can also be used for microscopic examination of clinical specimens.

- **Preparation:**
 - Place 1 drop of LPCB on slide.
 - Immerse fungal colonies with help of Scotch tape or tease mount.
 - Apply coverslip.
 - Visualise under microscope.

- **Controls:** A. niger, T. mentagrophytes
Fungal Media and Cultures

Mohammad Zeeshan and Seema Irfan

Once the specimen has been received, the next step is preparation of slides for microscopic examination and inoculation of appropriate culture media. There are a few principles that must always be kept in mind: always inoculate the enriched media first with the clinical specimen followed by inoculation of selective media; 2 sets of media should be inoculated, with 1 set incubated at 25-30°C and a duplicate set at 35 ± 2°C.

Table 2.1: Types of media

<table>
<thead>
<tr>
<th>Medium Type</th>
<th>Description</th>
<th>Selective Media</th>
<th>Differential Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enriched media</td>
<td>Supports rapid growth of pathogenic and non-pathogenic fungi.</td>
<td>SBA</td>
<td>Chromogenic BiGGY agar</td>
</tr>
<tr>
<td>Selective media</td>
<td>Contains chemicals and antibiotics that only allow the growth of certain fungi and inhibit the growth of saprophytic molds and bacteria respectively.</td>
<td>SDA, Chromogenic BiGGY agar, Mycosel</td>
<td>Chromogenic BiGGY agar</td>
</tr>
<tr>
<td>Differential media</td>
<td>Differentiates between closely related fungal species.</td>
<td></td>
<td>CHROMagar</td>
</tr>
<tr>
<td>Media for sporulation</td>
<td>Induces sporulation and helps in identification.</td>
<td></td>
<td>DTM</td>
</tr>
</tbody>
</table>

Fungal Media

The yield of most fungi is improved by direct culture of samples on fungal media. Cultures may be negative on bacterial media for some fungi, such as Histoplasma, Mucorales and Coccioides spp. Similarly, culture of Aspergillus spp. on bacterial media is 30% less effective than on fungal media. Common fungal media and tests used are:

- Sabouraud’s dextrose agar
- Mycobiotic or Mycosel agar
- Cornmeal Tween-80 agar
- Chromogenic BiGGY agar
- Dermatophyte test medium
- Water agar
- Christensen’s urea agar (urease test)
- Germ tube test

Sabouraud’s Dextrose Agar (With or Without Antibiotic)

Sabouraud’s dextrose agar (SDA) is a universal primary medium for fungal culture. The original version of the agar was composed by Sabouraud’s to isolate dermatophytes from non-sterile specimens, and was a low pH (5.6) medium with high dextrose content (4%), casein and animal peptic digest. The Emmons modification decreased dextrose to 2% and made the pH neutral (6.9-7.0). Other modifications since have included addition of various antibiotics and antifungals to change its selectivity and make it suitable for a variety of specimens.

Procedure

- Pour the clear slightly amber tinged medium into tubes as a slant or on petri plates.
- Inoculate tissue and fungal isolates by stabbing into the medium.
- Streak fluid specimens such as pus, aspirates, yeast isolates and yeast-like fungi in to quadrants.
- For plates inoculated directly from specimen, incubate at 25 °C, 30 °C and 37 °C.
- For temperature tolerance studies, incubate at an even wider range of temperatures (15-55 °C).
- Since SDA is a primary fungal culture medium, duration of incubation may be several weeks.

Interpretation

- Description of the colony’s forward and reverse surface and any diffusible pigment into the medium should be noted.

Limitations

- Addition of selective substances may not allow certain fungi to grow easily. On the other hand, SDA without antibiotic may not inhibit highly resilient bacteria in the specimen, making isolation of fungi a challenge.

Quality Control

- Positive control: growth of C. albicans and T. mentagrophytes
- Negative control: no growth of E. coli

Mycobiotic or Mycosel Agar

Mycobiotic or Mycosel selective medium principally formulated for the isolation of dermatophytes but also used for the isolation of other pathogenic fungi from specimens contaminated with saprophytic fungi and bacteria. The medium consists primarily of peptones from a pancreatic digest of soybean meal and dextrose. The selective agents are cycloheximide and chloramphenicol. Cycloheximide inhibits the faster-growing saprophytic fungi. Chloramphenicol inhibits Gram-negative and Gram-positive organisms. Susceptibility to cycloheximide may be used for identification of fungi.

Procedure

- Direct inoculation from specimen
- Incubate the plates at 25-30 °C in an inverted position with increased humidity for 30 days or longer in an aerobic atmosphere.
- Examine media for fungal colonies exhibiting typical colour and morphology.
- Cycloheximide susceptibility test
 - Make a suspension of pure colony of Candida species in distilled water (about 1.0 McFarland turbidity).
 - Streak a loop full suspension on the agar plate in the following sequence to avoid transfer of cycloheximide to control plate.
- SDA
- Mycobiotic or Mycosel agar
- Incubate at room temperature for 3 days.
- Observe both cultures for growth and record as equal to (=) or inhibited (-) or growth on Mycosel (+).

Interpretation

- Direct inoculation from specimen
- Positive: growth on plate.
- Negative: no growth on plate.
- Cycloheximide susceptibility test
 - Positive: growth on Mycosel equal to growth on SDA.
 - Negative: no growth on the Mycosel plate or less growth on Mycosel agar than on SDA.
- NOTE: the test should not be read after 3 days as sensitive strains may begin to grow on Mycosel (+).

Limitations

- Cycloheximide in the plate is also inhibitory to some clinically relevant species. These include some Candida species, A. fumigatus, mucoraceous fungi, and C. neoformans.

Quality Control

- For growth
 - C. albicans good growth.
- Staphylococcus aureus complete inhibition.
- Cycloheximide susceptibility test
 - Positive control: T. mentagrophytes and C. albicans.
- Negative control: A. niger.

10 11
CMT agar is a well-established medium used for cultivation of fungi as well as to study chlamydospores production by *Candida* species and other yeasts.

Procedure
- Pick a single colony of yeast from plate using a sterile straight wire.
- Make three parallel cuts ¼ inch or 1 cm apart on the surface of the agar, holding the inoculating wire at approximately 45° angle.
- Using sterile forceps, place a coverslip over the cross. Reduced oxygen tension stimulates chlamydospore production.
- Invert plate and incubate up to 2-3 days (96 hours) at 25 ± 2°C.

Interpretation
- Using low power objective of microscope, scan the growth on CMT agar.
- Determine at the outset if pseudohyphae are present. The observation of pseudohyphae and blastoconidia put an unknown isolate into the genus *Candida*.
- Examine plates daily for the development of chlamydospores.

Limitations
- None of the cornmeal agar patterns are diagnostic with the exception of chlamydospore production by *C. albicans*.
- Subculture where necessary and perform appropriate biochemical tests for further identification.

Quality Control
- Set up known controls.
- *C. albicans*: good growth, white colonies and chlamydospores production.
- *C. krusei*: good growth, white to cream colonies but no chlamydospores production.

Chromogenic Bismuth Glycine Glucose Yeast (BiGGY) Agar

BiGGY agar is a partially selective and differential medium for the cultivation and identification of *Candida* species from pure cultures or clinical specimens. *Candida* species, through a process of substrate reduction, reduces the bismuth salt to bismuth and sulfite to sulfide. Bismuth and sulfide combine to form a brownish to black precipitate that stains colonies and may diffuse into the medium. Also bismuth and sulfur compounds are inhibitory to many bacteria. Yeast extract and glucose provide essential nutrients for growth. Glycine is an additional nutrient, but also inhibits many bacterial species at the high concentration used in this medium.

Procedure:
- Incubate specimen on media as soon as it is submitted using streak plate technique when isolating pure cultures from specimens containing mixed flora.
- If culture is drawn from swab, then roll swab over a small area of the surface at the edge and then streak from this inoculated area. Streak in all four corners.
- Invert plate and incubate at 25 ± 2°C aerobically for 24-48 hours and observe daily for 5 days.

Interpretation
- *C. albicans*: smooth, round brown-black colonies with mycelial fringe without sheen or any diffusible pigment into surrounding media.
- *C. tropicalis*: smooth, dark brown to black colonies with a metallic sheen.
- *C. krusei*: large, flat, shiny, wrinkled brown-black colonies with yellow diffusible pigment.

Limitations
- Further testing should be performed on colonies from pure culture for complete identification.
- Some bacteria may grow on the agar but can be differentiated from yeast using microscopy.

Quality Control
- *C. albicans*, *C. krusei*, *C. tropicalis*: characteristic colonies.
- *E. coli*: complete or partial growth inhibition.

Dermatophyte Test Medium

Dermatophyte test medium is used as a screening medium for the recovery, selection and differentiation of dermatophytes (*Microsporum, Trichophyton* and *Epidermophyton*) from keratinous specimens (hair, skin and nails). Nitrogenous and carbonaceous compounds are provided by soy peptone. Cycloheximide inhibits saprophytic molds while chloramphenicol and gentamicin inhibits Gram-negative and positive bacteria. The medium is yellow and turns red with growth of dermatophytes due to the presence of phenol red indicator.

Procedure
- Skin scraping
 - Place the specimen directly on the agar surface using sterile forceps. It should be pressed into the agar slightly.
 - *Nail*
 - Cut into small piece with the scalpel or sterile blade placed directly on the agar surface using sterile forceps. It should be pressed into the agar slightly.
 - Incubate plate at 25°C for 2 weeks.
 - Examine plate daily for the presence of growth and pigment.

Interpretation
- Positive: growth and red pigment production.
- Negative: no growth.

Limitations
- Prolonged incubation may cause deterioration on antibiotics in the media and therefore cause the overgrowth of saprophytic molds.

Quality Control
- Positive control
 - *T. mentagrophytes* fair to good growth, alkaline (red pigment).
- Negative control
 - *P. aeroginosa* partial to complete inhibition.
 - *A. niger* partial to complete inhibition.

Water Agar

Water agar is a nutritionally-deficient medium known to enhance production of spores and conidia of sporulation.

Media Preparation
- Mix 20 grams of agar in 1 litre of distilled water.
- Bring reagents to a boil.
- Autoclave at 15 lb/in² for 15 minutes.

Procedure
- Using a sterile loop, pick a small sample from colony margin.
- Emulsify the colony in sterile normal saline.
- Transfer a drop from normal saline to water agar plate. Do not streak and allow the drop to be absorbed in the medium.
- Wrap a paraffin film around the sides of the plate to cover the opening (or use masking tape to hold the lid down).
- Incubate the water agar plate at room temperature.

Interpretation
- As the colony grows, observe sporulation with LPCB preparation.

Limitations
- In case of infection due to more than one agent, the strain that grows in a more limited manner may pass unnoticed for a long period. Therefore streak on fresh selective culture plates to identify individual colonies.
Quality Control
- Cultural Response: cultural characteristics observed after 48-72 hours incubation at 25-30°C.
 - *C. albicans*: fair to good growth.
 - Saccharomyces cerevisiae: fair to good growth.

Christensen's Urea Agar (Urease Test)
Urea agar is used for the differentiation of the yeast-like fungi and also in the identification of aerobic *Actinomyces* and *Trichophyton* species. Breakdown of urea by urease producing fungi releases ammonia, with increase in pH leading to colour change of medium from yellow (pH 6.8) to red (pH 8.1).

Procedure
- Inoculate the urea agar slope with heavy amount of pure culture.
- Incubate at different temperatures in aerobic media.
- Note any contamination in media.

Interpretation
- Positive: urea positive organism produces alkaline reaction indicated by pink colour.
- Negative: no colour change.

Limitations
- Bacterial contamination may cause false positive reaction.

Quality Control
- Positive control: *C. neoformans*.
- Negative control: *C. tropicalis*.

Germ Tube Test
Germ tube test is used for differentiation of *C. albicans* from other *Candida* species. Approximately 95-97% of *C. albicans* develop germ tubes when incubated in serum.

Procedure
- Pick a small sample from yeast colony and gently emulsify with 3-4 drops of serum in a small glass tube. (Note: *C. albicans* develops germ tubes when incubated in serum. *C. tropicalis* and other yeasts may be falsely interpreted as germ tube formation.)
- Incubate the tube at 37°C for 2 hours. Be careful as increasing the period of incubation leads to false positive results.
- Transfer a drop of serum onto a slide for examination.

Interpretation
- Germ tube test positive: true hyphae arising from yeast cell.
- Germ tube test negative: pseudohyphae arising from yeast cells.

Limitations
- Early pseudohyphae formation as seen in *C. tropicalis* may be falsely interpreted as germ tube formation.
- This test is only for preliminary identification and requires definitive identification.

Quality Control
- *C. albicans*: positive control.
- *C. tropicalis*: negative control.

Fungal Culture: Selection, Preparation and Reading
- For isolation of fungi from potentially contaminated specimens, simultaneously inoculate a nonselective medium and a selective medium.
- Sort and place new cultures slip in numerical order. Separate according to reading schedule and length of incubation.
- Inoculate the urea agar slope with heavy amount of pure culture. Correlate with culture sample submitted in the bacteriology section of laboratory.
- Incubate at different temperatures in aerobic media. Prolonged incubation may cause drying of media, therefore secure with paper tape around the whole circumference of the plate.
- Examine cultures daily to observe the rate of growth, gross colony morphology and physical changes or contamination in media.
- Once fungal culture plates have been examined, place them in appropriate stacks and re-incubate.
- Any mold referred from the bacteriology section is processed and worked up the same day.
- Any bacterial growth in these samples should also be shown to a senior mycology technologist/consultant.
- Positive specimens are worked up immediately.
- Any bacterial growth in these samples should also be shown to a senior mycology technologist/consultant for appropriate action.
- Routine screening of all other fungal cultures should be done daily for the first 2 weeks and 2 times a week for the remaining incubation period.
- All final cultures should be reviewed and signed by a senior mycology technologist/consultant.

Table 2.2: Types of fungal media and properties

<table>
<thead>
<tr>
<th>Type of media</th>
<th>Properties</th>
<th>pH</th>
<th>Incubation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep blood agar</td>
<td>General purpose enrichment media</td>
<td>7.4 ± 0.2</td>
<td>37°C aerobically</td>
<td>Low pH and high dextrose content enhance fungal growth and inhibit bacterial growth.</td>
</tr>
<tr>
<td>Sabouraud's dextrose agar without antibiotic</td>
<td>General purpose enrichment media</td>
<td>5.6 ± 0.2</td>
<td>37°C and 28°C aerobically</td>
<td>Incubate at different temperatures in order to observe the rate of growth. Dextrose is used as a source of energy.</td>
</tr>
<tr>
<td>Sabouraud's dextrose agar with chloramphenicol</td>
<td>Enrichment media (0.5% chloramphenicol)</td>
<td>5.6 ± 0.2</td>
<td>25-30°C aerobically</td>
<td>With the addition of antibiotic becomes more selective and helps in isolation of yeasts, molds, dermatophytes and Nocardia.</td>
</tr>
</tbody>
</table>
Mycobiotic or Mycosel agar
- **Enrichment media**
- **Selective (chloramphenicol & cyclohexamide)**
- **6.9 ± 0.2**
- **25-30°C aerobically**
- Cyclohexamide inhibits the faster-growing saprophytic fungi but is also inhibitory to some clinically-relevant species, including some Candida and Aspergillus species, mucoraceous fungi and *C. neoformans*.
- Chloramphenicol inhibits Gram-negative and Gram-positive organisms.
- Reading after 72 hours is not reliable.

Potato dextrose agar
- **General purpose sporulation medium**
- **Selective (tartaric 10%)**
- **3.5 ± 0.1**
- **25-30°C aerobically**
- Very low pH with tartaric acid inhibits bacterial growth.
- Stimulates conidium production in fungi.
- Stimulates pigmentation production in some dermatophytes.

CMT agar
- **General purpose and sporulation medium**
- **Selective (chloramphenicol & cyclohexamide)**
- **6.0 ± 0.2**
- **25-30°C aerobically**
- Tween-80 is incorporated for the demonstration of pseudohyphae, chlamydospore and arthrospore formation.
- Chlamydospore production is best obtained if the yeast inoculum is placed under a coverslip or following subsurface inoculation creating a microaerophilic environment.

Dermatophyte test medium
- **Selective (chloramphenicol & cyclohexamide)**
- **Differential**
- **5.5 ± 0.2**
- **25-30°C aerobically**
- Cyclohexamide inhibits saprophytic molds, chloramphenicol inhibits bacteria.
- The morphology and microscopic characteristics are easily identified with this medium.
- Presence of phenol red indicator.
- The medium is yellow and turns red with growth of dermatophytes.

Bismuth glycine glucose yeast agar
- **Selective**
- **Differential**
- **6.8 ± 0.2**
- **37°C aerobically 48-72 hours**
- Final identification with biochemical and morphological tests needed.

CHROMagar
- **Selective**
- **Differential**
- **5.9 ± 0.2**
- **35 ± 2°C aerobically 24-48 hours**
- Examine plate for amount of growth and colour formation.
- Isolation and presumptive identification of yeast and filamentous fungi.
- Differentiation of *C. albicans*, *C. tropicalis* and *C. krusei*.
- Due to the differences in morphology and colours of the yeast colonies, this medium facilitates the detection of mixed yeast cultures in specimens.

Table 2.3: Specimen-specific requirements for culture, media and reading frequency

<table>
<thead>
<tr>
<th>Standard media inoculated</th>
<th>Aerobic incubation</th>
<th>Reading of culture</th>
<th>Target organism and fungal element</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SDAC</td>
<td>1 SDAC, SBA, CHROMagar/BiGGY at 35-37°C</td>
<td>4 weeks Usually isolates appear in 48-96 hours; some organisms may take longer.</td>
<td>Daily for first week, then twice weekly for the next 3-4 weeks. Yeast Filamentous fungi Dimorphic fungi</td>
</tr>
<tr>
<td>1 Mycosel</td>
<td>1 SDAC, PDA, Mycosel at 22-26°C</td>
<td>4 weeks Usually isolates appear in 48-96 hours.</td>
<td>Daily for the first 2 weeks, then twice weekly for the next 3-4 weeks. Cryptococcus Candida Aerobic actinomycetes Filamentous molds</td>
</tr>
<tr>
<td>1 PDA</td>
<td>1 SDAC, SBA, CHROMagar/BiGGY at 35-37°C</td>
<td>4 weeks Usually isolates appear in 48-96 hours.</td>
<td>Daily for the first 2 weeks, then twice weekly for the next 3-4 weeks. Yeast Filamentous fungi Dimorphic fungi</td>
</tr>
<tr>
<td>1 SBA</td>
<td>1 SDAC, SBA, CHROMagar/BiGGY at 35-37°C</td>
<td>4 weeks Usually isolates appear in 48-96 hours.</td>
<td>Daily for the first 2 weeks, then twice weekly for the next 3-4 weeks. Yeast Filamentous fungi Dimorphic fungi</td>
</tr>
</tbody>
</table>

Christensen's urea agar
- **Identification**
- **6.7 ± 0.2**
- **25-30°C aerobically**
- The ability to hydrolyse urea is an important phenotypic characteristic for the presumptive identification of *Cryptococcus*, *Trichosporon* and *Rhodotorula* spp.
- Differentiates between *T. mentagrophytes* and *T. rubrum*.
- The medium contains 2% urea with phenol red serving as the indicator.
Blood and bone marrow culture

- Blood culture bottles containing brain heart infusion (BHI) broth
 - 35-37°C
 - Keep in Bactec automated system for 4 weeks.
 - If no growth after 7 days, subculture on SBA every week for the next 3-4 weeks.
 - On SBA, Mycosel, and CHROMagar/BIGGY if smear positive for yeast
 - Subculture on SDA, SBA, Mycosel and CHROMagar/BIGGY if smear positive for yeast
 - Keep subculture for 72 hours.

- Dermatological specimens
 - 1 SDAC at 35-37°C
 - 1 SDAC, DTM, Mycosel at 22-26°C
 - 4 weeks
 - Usually colonies appear in 7-10 days.
 - Daily for first week, then twice weekly for the next 3 weeks.
 - Dermatophytes
 - Yeasts
 - Saprophytes as superimposed infective agents

Microscopic Examination of Culture

An essential feature of fungal identification is the microscopic morphology of the isolate. The common techniques used for observing fungal culture under the microscope are given below.

Tease Mount Preparation
- Place a clean glass slide on the work bench and put a small drop of LPCB solution in the middle of the slide.
- Remove a fragment of a fungal colony (approximately 1-2 mm from the periphery) with a wooden stick and place on the LPCB solution.
- Gently tease the fragment with two wooden sticks until it has been separated.
- Carefully examine the slide under low (x10) and high power (x40) objectives of the microscope for the characteristic shape and arrangement of the spores, hyphae, budding yeasts etc.
- For a permanent preparation, rim the coverslip with clear nail polish or Permount.

Adhesive/Scotch Tape Preparation
- Place a clean glass slide on a sheet of white paper.
- Place a small drop of LPCB in the center of the slide.
- Touch the adhesive side of a small length of transparent tape to the surface of the colony.
- Gently place a coverslip over it. Do not tap or push down as this may dislodge conidia from conidiophores.
- For a permanent preparation, rim the coverslip with clear nail polish or Permount.

Fungal Slide Mount (Fig. 2.3)

Best technique for visualization of fungal structures without disruption of arrangement.
- Take a sterile petri dish and cover it with tissue paper. Place a bent sterile glass tube or two sterile wooden sticks on the tissue paper.
- Place a sterile slide on the wooden sticks/glass tube so that it is raised above the level of the tissue paper.
- Remove a fragment of a fungal colony (approximately 1-2 mm from the periphery) with a wooden stick and place on the LPCB solution.
- Cut a block (1x1 cm) of PDA and place it in the middle of the slide. Inoculate by stabbing all 4 sides of the block with the fungus that needs to be identified. Place a sterile coverslip on top of the block.
- Soak the tissue paper with sterile distilled water.
- Examine both slides for sporulation and arrangement of microscopic structures to identify the fungus.
- Prevent prepared media from unnecessary light exposure.

Quality Control

The following measures should be taken on a daily basis to ensure QC:
- Check and record temperature readings of all incubators, refrigerators and freezers every morning.
- Log and report abnormal readings to the in-charge technologist.
- Review QC of media and strains, and record results. In case of incorrect results, take corrective action.
- Before use, physical check of plates is necessary for any signs of deterioration and contamination.
- Maintain proper inoculation conditions, temperature and pH for optimal fungal growth. Excessive heating and inappropriate pH may cause delayed growth or growth inhibition.
- Review by senior technologist/consultant

Table 2.4: Daily routine of mycology lab

<table>
<thead>
<tr>
<th>Step 1: Quality Control</th>
<th>Step 2: Fungal Smears</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation</td>
<td>Preparation</td>
</tr>
<tr>
<td>Light exposure</td>
<td>Reading schedule – 3 times a day</td>
</tr>
<tr>
<td>Temperature regulation</td>
<td>Review by senior technologist/consultant</td>
</tr>
</tbody>
</table>

Step 3: Fungal Cultures

- Preparation
- Reading schedule – daily, weekly and monthly
- Cross-checking growth with bacterial culture sample
- Review by senior technologist/consultant

Step 4: Fungal Slide Mounts

- Preparation
- Reading

Fig. 2.3: Slide culture technique.
3
DIAGNOSIS OF FUNGAL INFECTIONS
CLINICAL LESIONS, MICROSCOPIC EXAMINATION AND CULTURE
Diagnosis of Fungal Infections: Clinical Lesions, Microscopic Examination and Culture

This chapter describes common clinical presentations, growth factors, and gross culture and microscopic appearance of fungi prevalent in Pakistan. Traditionally, fungal infections were diagnosed when they manifested as superficial cutaneous infections. However, in the past few decades, a significant number of invasive infections due to haematological dissemination of fungal diseases have been diagnosed. This increase in incidence is attributable to immunocompromised states (for instance, patients suffering from haematological malignancies, undergoing chemotherapy, uncontrolled diabetes, infectious diseases such as HIV/AIDS) as well as improvements in diagnostic techniques and shortened turnaround times. Currently, antifungals are available to manage fungal diseases but inherent resistance to antifungal therapy remains a problem for some species involved in disseminated infections.

Box 3.1: Definitions

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mold (mycelial form)</td>
<td>Fungus that grows in the form of multicellular filaments called hyphae.</td>
</tr>
<tr>
<td>Yeast</td>
<td>Fungus that grows as a single cell.</td>
</tr>
</tbody>
</table>

Dimorphic Fungi
Fungus can exist in both yeast and mold (mycelial) forms. Can be cultured in enriched media at 25-30°C to yield mold and at 35-37°C to yield yeast form, e.g. Sporothrix schenckii.

Table 3.1: Notable identification features

- Location: intracellular or extracellular
- Capsule: non-capsulated or encapsulated (e.g. Cryptococcus on India ink smear)
- Septa: aseptate or septate
- Septa: thin or wide
- Hyphae: present, absent or pseudohyphae
- Hyphae: hyaline or pigmented
- Hyphae: acute- or wide-angled branches
- Budding: multiple or unicellular yeasts
- Budding: narrow or broad-based yeasts
- Filaments: non-branching or branching (e.g. Actinomyces or Nocardia)
- Rods: non-branching or branching (e.g. Nocardia)
- Arthroconidia
- Chlamydoconidia
- Endothrix
- Spheres
- Endospores
- Sclerotic bodies
- Arthroconidia
- Chlamydoconidia
- Endothrix
- Spheres
- Endospores
- Sclerotic bodies

Candida
Joveria Farooqi and Kausar Jabeen

Candida is a commensal of skin, oral and intestinal flora in humans, and disease generally results when immunity is lowered (e.g. antibiotics use, stress, diabetes) or completely compromised (e.g. HIV/AIDS). Infection can result in a spectrum of clinical presentations and some species are known to have a predilection for certain sites: *C. albicans* is the most common cause of oral and vulvovaginal candidiasis; *C. parapsilosis* is frequently reported in nail-related infections; and *C. parapsilosis* and *C. pelliculosa* are strongly associated with nosocomial infections. In recent years, the emergence of resistance has led to antifungal susceptibility testing and reporting in invasive specimens. *C. glabrata* and *C. krusei* are known for their resistance to fluconazole (the former acquired and the latter intrinsic).

Clinical Presentation

Table 3.2: Types of Candidiasis

<table>
<thead>
<tr>
<th>Invasive</th>
<th>Semi-invasive</th>
<th>Non-invasive</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS candidiasis</td>
<td>Esophagitis</td>
<td>Oral thrush</td>
</tr>
<tr>
<td>Candida endophthalmitis</td>
<td>Chronic mucocutaneous candidiasis</td>
<td>Otitis externa</td>
</tr>
<tr>
<td>Candida endocarditis, pericarditis and endovasculitis</td>
<td></td>
<td>Chronic cutaneous and onchomycosis</td>
</tr>
<tr>
<td>Intra-abdominal candidiasis</td>
<td></td>
<td>Candiduria</td>
</tr>
<tr>
<td>Candida pyelonephritis or urinary fungus ball</td>
<td></td>
<td>Chronic mucocutaneous candidiasin</td>
</tr>
<tr>
<td>Candida osteomyelitis and arthritis</td>
<td></td>
<td>Vulvovaginitis</td>
</tr>
<tr>
<td>Candidemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic disseminated candidiasis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oral thrush (Fig. 3.1.1-1)

Genital thrush (vulvovaginitis), Gram stain of vaginal swab (Fig. 3.1.1-2)

One of the commonest presentations of candidiasis. While white exudate on oral mucosa due to candida overgrowth and mucocutaneous inflammation. Oral thrush is associated with extremes of ages, antibiotic therapy, chronically ill patients and is generally considered an early manifestation of disturbance in innate immunity.

Stain reveals abundant unicellular (budding yeasts) and multicellular (pseudohyphae) forms on squamous cells. Candida typically stains Gram positive. Genital thrush is associated with diabetes, pregnancy and compromised host immune status (recurrence common if inadequately treated). (x100)
Characterised by patches of pseudomembranous white slough along the esophageal mucosa that can be easily wiped. Frequently accompanied by oral thrush. *Candida esophagitis* is mostly seen in immunocompromised patients. Classic symptoms include dysphagia, odynophagia and weight loss due to difficulty swallowing.

Thickened and discoloured nail plate with subungual hyperkeratosis and onycholysis. White adherent plaque seen in intertriginous space of ring and little fingers.

Discoloured and pitted nails with a crumbling nail plate. Nail folds are swollen and inflamed and show marked subungual hyperkeratosis.

Itchy and at times malodorous rash typically between fourth and fifth toes due to *Candida* or dermatophyte infection. Often a feature of tinea pedis (athlete’s foot).

Recurrent candidiasis. Despite repeated antifungal therapy, the patient’s nails remained discoloured and pitted after 1 year. There is no evidence of invasive disease.

Characteristic by patches of pseudomembranous white slough along the esophageal mucosa that can be easily wiped. Frequently accompanied by oral thrush. *Candida esophagitis* is mostly seen in immunocompromised patients. Classic symptoms include dysphagia, odynophagia and weight loss due to difficulty swallowing.

C. albicans is a dimorphic fungus that is a skin and gut commensal. Infection results in oral and vaginovaginal candidiasis in immunocompetent hosts, and fatal disseminated infections in immunocompromised patients. *C. albicans* is the most common fungal species isolated from clinical specimens. More recently, it has emerged as a cause of hospital-acquired infections, especially with implantable medical devices where it covers the surface with a biofilm.

C. albicans, 10% KOH smear

Sometimes *C. albicans* can give the impression of spherical yeasts. The smear should be examined in several fields before deciding on the shape and morphology of the yeast cells. (x100)

Oval to subspherical budding yeasts. Presence of abundant pseudohyphae in specimen suggests overgrowth and active infection. (x40)

C. albicans, Gram stain from blood culture bottle

C. albicans, Gram stain

Pulmonary valve vegetation shows numerous budding yeast cells invading valve tissue. Yeast cells measure 6–8 µm in diameter. (x100)
Practical Guide and Atlas for the Diagnosis of Fungal Infections

Diagnosis of Fungal Infections (Clinical Lesions, Microscopic Examination and Culture)

Candida albicans

- Ovoid to subspherical budding yeast cells 6-8 µm in size. (x100)
- Confirmatory test to differentiate C. albicans from other Candida species. C. albicans produces tubular outgrowths (germ tubes or true hyphae) as opposed to elongation of a budding yeast (pseudohyphae). It is also seen in C. dubliniensis. (x40)
- On microscopy, pseudohyphae appear as long and slender tubules with clusters of round to oval blastoconidia (arrow). The presence of terminal double-walled round chlamydospores is diagnostic of C. albicans. These chlamydospores may also be seen in C. dubliniensis but they are usually found in clusters and are more abundant as compared to C. albicans. (x40)

Candida tropicalis

- Cream coloured colonies. Small colony variants in overnight cultures give the impression of mixed growth.
- Glistening creamy colonies sprouting mycelia or "fringes" – typical of C. albicans. These fringes may also rarely be seen in C. tropicalis colonies. Growth on chocolate agar shows even more prominent fringes or star-shaped colonies.
- Day 4. Colonies do not glisten and are umbonated, with radial grooves around the edges only.
- Most strains of C. albicans are susceptible to triazoles, echinocandins and amphotericin. However, due to emerging resistance, especially against triazoles and echinocandins, most labs perform antifungal susceptibilities. Clinical breakpoints for zone diameters (disc diffusion) and broth microdilution are now available in both EUCAST and CLSI References.

C. albicans, culture on SDA

Fig. 3.1.1-12

C. albicans, culture on chocolate agar

Fig. 3.1.1-13

C. albicans, Gram stain

Fig. 3.1.1-14

Germ tube test

Fig. 3.1.1-15

C. albicans, microscopy of CMT agar

Fig. 3.1.1-16

Susceptibility testing (disc diffusion, see chapter 4 for details)

Fig. 3.1.1-17

C. albicans, culture on chocolate agar

Fig. 3.1.1-18

C. tropicalis, culture on SDA

Fig. 3.1.1-19

C. tropicalis, culture on chocolate agar

Fig. 3.1.1-16

C. tropicalis, culture on SBA

Fig. 3.1.1-20

C. tropicalis, culture on BiGGY agar

Fig. 3.1.1-21

C. tropicalis, Gram stain from positive blood culture bottle

Fig. 3.1.1-22

C. tropicalis, microscopy of CMT agar

Fig. 3.1.1-23

C. tropicalis is part of skin and gut flora and frequently results in disseminated invasive infections in neutropenic and cancer patients.

At 24-48 hours, small and large colony variants are seen. Smaller colonies are usually dome-shaped while the larger ones are dull white, dry and slightly elevated.

Similar to chocolate agar, culture in blood agar has both small and large colony variants which become less prominent after 72 hours (3 days). The colonies are initially non-haemolytic, dry and elevated but turn dome-shaped after the third day.

Colonies are dry, light to dark brown, with a silver metallic sheen, most prominent on the primary streak. They are also umbonated and have radial grooves around the edges.

Yeast size is around 4-6 µm, almost the same size as RBCs. Shape of cells is more oval than round. Pseudohyphae are frequently seen on smear made from clinical specimens. (x100)

Long slender pseudohyphae with elongated blastoconidia, arising successively from older blastoconidia. This gives the appearance of a rabbit head with long ears. (x40)
Candida parapsilosis

C. parapsilosis is both a human commensal and an environmental pathogen, and is usually implicated in nail infections. It can result in a range of invasive diseases including endocarditis, endophthalmitis, meningitis and peritonitis.

Small cream-coloured dome-shaped glistening colonies appear after 48 hours of incubation.

 Colonies are non-haemolytic dome-shaped glistening later curling up and becoming lacy. Prominent after 48 hours.

 Colonies are small and glistening at 48 hours but later wrinkle and appear lacy.

 Yeasts are oval and 4-6 µm in diameter, approximately the same size as red blood cells. Pseudohyphae are less common in clinical specimens. (x100)

 Short slender delicate pseudohyphae with elongated blastoconidia, more tapered than *C. tropicalis*. Some swell up to form giant (balloon) cells (arrow). (x40)

Candida glabrata

C. glabrata is both a commensal and environmental pathogen. It can cause mucosal surface infections (oropharyngeal, esophageal, and vaginal candidiasis) and is now increasingly isolated in disseminated fungemia.

Tiny white glistening colonies appear at 48 hours. Texture is not creamy, more like bacteria.

 Colonies are small, glistening at 48 hours but older colonies wrinkle up and appear lacy.

 Colonies appear off-white.

 Yeasts are oval and smaller than red blood cells, approximately 2-4 µm in diameter. Pseudohyphae are never seen. (x100)

 Yeast cells are small and oval. Pseudohyphae absent. (x10)
Candida krusei

C. krusei results in nosocomial disseminated infections in patients with haematological malignancies or in immunosuppressed states.

Colonies are dry, almond-shaped and spreading across the plate.

Colonies are dark brown with a brown diffusible pigment and a silver metallic sheen.

Yeast form is 4-6 µm, almost the same size as RBCs. Shape of cells is oval to elliptical. Pseudohyphae may be seen. (x100)

Long slender pseudohyphae with elongated blastoconidia, aligned both parallel and perpendicular to the axis of the pseudohyphae, giving a cross-matchstick arrangement (arrow). (x40)

Candida lusitaniae

C. lusitaniae is a gut commensal that is a very rare cause of invasive infections in patients with prolonged neutropenia, bone marrow transplantation or on high-dose cytoreductive chemotherapy.

Small white glistening dome-shaped colonies.

Similar to chocolate agar, the colonies are white, small, glistening and dome-shaped. Like most yeasts, colonies are non-haemolytic.

White glistening dome-shaped colonies.

Uniformly coloured dark brown glistening colonies giving the impression of tempered chocolate.

Small oval budding yeast cells, 2-4 µm in size. Most do not form pseudohyphae in specimen. (x100)

Short curved, branched pseudohyphae, with elongated blastoconidia. (x40)
Candida guilliermondii

C. guilliermondii is an uncommon skin commensal as well as an environmental pathogen that is associated with onychomycosis and superficial cutaneous infections. Rarely seen as a cause of invasive fungal infection.

Colony morphology is quite similar to *C. lusitaniae*. Small white glistening dome-shaped colonies.

Growth similar to chocolate agar. Small white glistening dome-shaped non-haemolytic colonies.

Uniformly coloured brown glistening colonies.

Small white budding yeast cells oval to elliptical in shape. Pseudohyphae usually not seen in clinical specimens. (x100)

Small clusters of blastoconidia giving rise to short pseudohyphae. Yeast cells are oval to elliptical and 2-3 µm in size. (x40)

Candida auris

C. auris has recently emerged across the globe as a nosocomial pathogenic Candida species closely related to *Candida haemulonii*. It was first identified as a separate species in a report from South Korea in 2008, and there have been reports of outbreaks in Pakistan, Venezuela, South Africa and United Kingdom. The most alarming feature of this organism is the ability to develop multi-drug resistance, that is, resistance against two or more classes of antifungal agents, including amphotericin. Due to resistance to various group of antifungal drugs, morbidity and mortality is higher than other Candida infections.

Small white dome-shaped non-haemolytic colonies with a butyrous texture.

Microscopically, the cells are small to medium sized oval budding yeasts not forming any pseudohyphae. (x40)

Close-up view shows small to medium oval yeasts.

Light brown coloured colonies with a white margin.

Susceptibility testing

Disc diffusion method. *C. auris* is considered inherently resistant to fluconazole (arrow) and is known to acquire resistance against several antifungal classes, including amphotericin and echinocandins.
Cryptococcus neoformans

Kaiser Jabeen and Joveria Farooqi

C. neoformans is an environmental yeast causing pulmonary, CNS and skin lesions. The most common site of entry is lungs where it can cause asymptomatic infection and even life-threatening pneumonia. Serum cryptococcal antigen detection test is performed to rule out invasive cryptococosis.

It is an important pathogen in morbidities associated with HIV/AIDS and CNS involvement should be ruled out in patients at high risk of dissemination. Focus can persist in prostate after therapy for systemic disease and may act as a reservoir for relapse in men with AIDS.

Clinical Presentation

Pulmonary cryptococcosis

Chest radiograph shows complete opacification of the right lower lobe.

Axial T1-weighted scans show nodular meningeal enhancement with micro-abscesses. There is hydrocephalus. CSF examination was positive for Cryptococcus spp.

CT scan shows consolidation (arrow) in the right lower lobe.

Common presentations of cutaneous cryptococcosis include papules, maculopapules, ulcers and cellulitis. In severely immunosuppressed patients, skin manifestations may reflect disseminated cryptococcal disease.

C. neoformans, Gram stain of cerebrospinal fluid

Fig. 3.1.2-5

C. neoformans, India ink preparation

Fig. 3.1.2-6

Round budding yeasts with narrow-based budding with capsule. (x100)

Round budding cells with halo due to capsule. (x40)

C. neoformans, PAS stain of lung tissue

Fig. 3.1.2-7

C. neoformans, PAS stain of skin biopsy

Fig. 3.1.2-8

Spherical yeast cells with narrow-based budding. Thick capsule at times does not allow strong staining of yeast cells. (x40)

C. neoformans, Fontana-Masson stain of skin biopsy

Fig. 3.1.2-9

C. neoformans, Gomori methenamine silver nitrate stain of skin biopsy

Fig. 3.1.2-10

Dark pink round budding yeast cells with surrounding capsular artefact. (x40)

Cryptococcal cells are stained dark brown to black. (x40)

Round black budding yeast cells. (x40)
Round budding yeasts (5-7 µm in size) without pseudohyphae with some cells exhibiting multipolar budding. (x100)

Cryptococcus typically stains gram positive and may be mistaken for a lymphocyte. India ink smear should be performed for diagnosis. (x100)

Clusters of round blastospores. (x10)

Most Cryptococcus strains are urease positive.
Rare Yeasts

Kaiser Jabeen and Joveria Farooqi

Geotrichum species

Geotrichum is an environmental organism and part of normal flora in humans, and results in disseminated infection in immunosuppressed patients.

Colonies are initially yeast-like but later become dry with development of low aerial mycelia.

Trichosporon species

Trichosporon is a skin commensal that results in superficial skin, hair (white piedra) and nail infection. It is the second common cause of life-threatening disseminated yeast infections.

True hyphae giving lateral branches at right angle. These lateral branches break into rectangular arthroconidia of variable lengths. There are no blastoconidia. Most strains are urease negative. (x10)
Malassezia furfur

M. furfur is a skin commensal in sebaceous-rich areas of the body, and causes dandruff, seborrheic dermatitis and tinea versicolor. It is also a known cause of sepsis in neonates receiving parenteral nutrition with lipid-rich supplements. The growth of *Malassezia* species (with the exception of *Malassezia pachydermatis*) requires fatty acid and therefore this yeast does not grow on routine fungal culture media.

Tinea versicolor, microscopic examination – Calcofluor white stain (fluorescent) of skin scrapings

Fig. 3.1.3.7

Skin scrapings from patient with tinea versicolor reveals both yeast and hyphal form – classical “spaghetti and meatball appearance”. (x40)

Fig. 3.1.3.8

Growth of *M. furfur* requires fatty acid and in laboratory fungal growth media is overlaid with olive oil to promote growth as shown in the image. Colonies of *M. furfur* are smooth and yeast-like that later become dry and wrinkled. Microscopy of these colonies reveals yeast cells with distinct collarettes.

Rhodotorula species

Rhodotorula is an environmental yeast, known for its distinctive red pigmentation. It results in invasive infections in hospitalised patients with hematological malignancies, AIDS, burns, central venous line insertion as well as IV drug abusers and patients admitted in the ICU.

Fig. 3.1.3.9

Oval budding yeast cells with capsular artefact. Presence of capsule may be mistaken as *Cryptococcus* species. (x100)

Fig. 3.1.3.10

Colonies grow rapidly and mature in 4 days. Colour of colonies is red, reddish orange or pink. Colonies may become mucoid due to presence of capsule.

Fig. 3.1.3-11

Colonies grow rapidly and mature in 4 days. Colour of colonies is red, reddish orange or pink. Colonies may become mucoid due to presence of capsule.

Fig. 3.1.3-12

Oval-elongated cells that produce rudimentary pseudohyphae. These are urease positive and usually grow at 37°C. (x10)

Ustilago (Pseudozyma) species

Ustilago is a plant pathogen that is rarely associated with human disease, however, it can cause blood stream infections in neonates and immunosuppressed patients.

Fig. 3.1.3-13

Initial white, yeast-like colonies that later become raised and membranous.

Fig. 3.1.3-14

Irregular, elongated, spindle-shaped cells.
Aspergillus

Ma Zatar

Over 200 different molds are classified under this species. Found in oxygen-rich and saccharide-rich environments, such as on post-harvest crops storage. Aspergillosis includes wide range of clinical diseases, which ranges from invasive infections to simple allergies. The most serious form of disease is invasive pulmonary Aspergillosis which occurs in immunocompromised hosts and sometime disseminates to other organs. Aspergillus fumigatus is the most frequent pathogenic Aspergillus globally but in Pakistan, A. flavus causes most of invasive infections followed by A. fumigatus, A. terreus and A. niger. For clinical laboratories, identification of Aspergillus up to species level is crucial as variable susceptibilities to antifungal drugs influence the selection of a drug to be used for the management of a case. Fungal hyphae are angioinvasive and lead to the formation of mycotic emboli, hemorrhages and infarction of tissue.

Clinical Presentation

Table 3.3: Types of Aspergillosis

<table>
<thead>
<tr>
<th>Hypersensitivity</th>
<th>Colonisation</th>
<th>Superficial</th>
<th>Invasive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic bronchopulmonary aspergillosis (ABPA)</td>
<td>Aspergiloma</td>
<td>Keratitis</td>
<td>Pulmonary</td>
</tr>
<tr>
<td>Asthma</td>
<td>Ootomycosis</td>
<td>Aspergillosis (acute and chronic)</td>
<td></td>
</tr>
<tr>
<td>Allergic rhinosinusitis</td>
<td>Sinusitis</td>
<td>Tracheobronchitis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutaneous</td>
<td>Extrapulmonary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Endothelialitis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Endocarditis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Osteomyelitis and arthritis</td>
<td></td>
</tr>
</tbody>
</table>

Invasive pulmonary aspergillosis

A. Postero-anterior radiograph of 56-year-old female patient shows right middle lobe pneumonia, diffuse infiltrates in both lungs and halo sign.

B. Non-enhanced CT scan shows the centre of the consolidated lesion liquefying to turn into a thick-walled abscess (arrows). Aspergillus spp. was isolated from the pus aspirate.

Middle-aged male patient with recurrent haemoptysis.

A. Postero-anterior radiograph shows a well-defined spherical thin-walled cavity in the left middle zone (arrow). Note clear "halo" around the opacity.

B (supine) and C (prone). Non-contrast CT chest in lung window settings. Free-lying soft tissue density ball in a cavity which changes position with gravity (arrow). Appearance consistent with aspergiloma (fungal ball) that occurs when inhaled conidia enter a pre-existing cavity in lung and germinate to form a solid ball of fungal mycelium. Rarely can lead to invasive disease.

Fungal arthritis and osteomyelitis

A 10-year-old boy presented with history of painful swollen left hip and an inability to walk. Coronal inversion recovery (STIR) MR of both hips shows marrow edema involving the acetabulum and the proximal femur (arrow head), joint effusion (white arrow) and an intraosseous abscess in the roof of the acetabulum (black arrow). Compare with the normal right hip. Joint aspirate revealed growth of Aspergillus spp.

Fungal sinusitis extending into intracranial space

A 14-year-old boy with no known co-morbidities presented with complaints of reduced vision in left eye and headaches.

A. Coronal T2-weighted MRI scan shows an expanded sphenoid sinus bulging into the intracranial space. The sinus is filled with material which is profoundly low-signal on T2-weighted image resembling air (arrow).

B (pre-contrast) and C (post-contrast). Coronal T1-weighted scans shows intermediate signal on T1-weighted scan with enhancement is pathognomonic of fungal sinusitis secondary to an Aspergillus infection. Fungal sinusitis can be fatal and is mostly seen in tropical countries.

Brain abscess

A 26-year-old female patient presented with headache and drowsiness.

A. Axial T2-weighted MRI of brain shows a well-defined low T2-signal lesion in the right frontal lobe with surrounding edema (arrow).

B. Axial contrast-enhanced T1-weighted MRI of brain shows marked peripheral enhancement (black arrow) as well as involvement of the left lateral ventricular lining (white arrow). Radiological findings are consistent with diagnosis of brain abscess with ventriculitis. Similar presentation with tuberculous infection. Both the CSF as well as the aspirate from the abscess had growth of Aspergillus spp.
Practical Guide and Atlas for the Diagnosis of Fungal Infections

Keratitis, Calcofluor white stain

Corneal ulcer scraping shows hyphae. *Aspergillus*, mainly *A. fumigatus*, is an infrequent cause of infection of the cornea after trauma or corneal surgery. (x20)

Cutaneous aspergillosis

A 32-year-old male patient presented with a 6-month history of asymptomatic flesh-coloured papules on trunk gradually increasing in number. Culture shows growth of *Aspergillus* spp. Patient responded to treatment withitraconazole but was lost to follow-up.

Allergic bronchopulmonary aspergillosis (ABPA)

A 25-year-old female patient known asthmatic presented with an episode of haemoptysis.

A. Postero-anterior radiograph of chest shows central bronchiectasis with a dilated fluid-filled bronchus at the left hilum.

B. Coronal reformatted non-contrast CT of the chest better delineates the extent of the central bronchiectasis and the fluid-filled bronchus. Appearances consistent with ABPA.

Aspergillus fumigatus

The most commonly isolated *Aspergillus* species typically found in soil and compost. *A. fumigatus* mold cause fatal acute pulmonary infection as well as chronic pulmonary infections and allergic bronchopulmonary aspergillosis. It is also the most common cause of invasive fungal infection in immunosuppressed individuals.

Day 3, incubation at 37°C. Smoky grey-green and velvety-powdery growth.

Septate hyphae, short conidiophore, flask-shaped vesicles, uniseriate phialides (only on upper two-thirds of vesicle) and columnar conidia. (x40)
Aspergillus flavus

Mold found in warm humid soil as well as coloniser of nuts, seeds and legumes where it produces A. flavus toxin. It can cause the complete spectrum of aspergillosis. A. flavus is unique in its ability to be thermo-tolerant and be able to survive extremes of temperature.

Day 4, incubation at 37°C. Initial yellow growth which quickly turned bright to dark yellow-green, lime and olive-green.

Yellow to green coloured colonies.

Day 4. Tan to white on reverse.

Creamy white to yellow colour.

Septate hyphae, long conidiophore, uniseriate and (mostly) biseriate phialides, and numerous conidia. (x40)

Aspergillus nidulans

Day 4, incubation at 37°C. Rapid growing velvety green to buff colonies.

Smooth brown pigmented stalk, hemispherical vesicle with metulae and phialides. (x40)

Close-up of vesicle. (x40)

Thick-walled globose Hülle cells. (x40)
Aspergillus terreus

A. terreus is a mold commonly found in soil, compost and dust, and used industrially to produce organic acids and enzymes. Infection mostly manifests as otomycosis and onychomycosis as well as disseminated invasive disease.

Day 3, incubation at 37°C. Velvety tan to cinnamon brown growth.

Day 3, incubation at 37°C. Pale brown reverse.

Septate hyphae, relatively short conidiophore, biseriate phialides covering upper half of vesicle, and round and smooth conidia. (x40)

Aspergillus niger

A. niger is a mold found in soil and indoor environment, affecting fruits and vegetables. It is one of the most common causes of otomycosis which can result in otalgia, hearing loss and at times permanent damage to tympanic membrane.

Day 3, incubation at 37°C. Surface granular in texture with whitish colouration that rapidly turned black at the centre.

Day 3, incubation at 37°C. Creamy white to yellow surface.

Three long conidiophores arising from septate hyphae. The central vesicles are completely covered with conidia. (x40)
Mucoraceous Molds

Kaufer Jabeen

Mucorales

Mucorales include *Rhizopus*, *Mucor* and *Lichtheimia* molds known for their characteristic black colour and angioinvasive manifestations. Central nervous system mucormycosis is mostly seen as an extension from nose or paranasal sinus with a blackish discharge while acute and rapidly fatal gastrointestinal mucormycosis is seen in patients with extreme malnutrition. Treatment consists of intravenous anti-fungal (lipid formulations of amphotericin B are first-line) and surgical excision of the infected tissue whenever feasible.

Clinical Presentation

<table>
<thead>
<tr>
<th>Table 3.4: Types of mucormycosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Central nervous system mucormycosis</td>
</tr>
<tr>
<td>• Rhinocerebral mucormycosis</td>
</tr>
<tr>
<td>• Sinopulmonary mucormycosis</td>
</tr>
<tr>
<td>• Gastrointestinal mucormycosis</td>
</tr>
<tr>
<td>• Disseminated mucormycosis</td>
</tr>
<tr>
<td>• Rare:</td>
</tr>
<tr>
<td>• Endocarditis</td>
</tr>
<tr>
<td>• Osteomyelitis</td>
</tr>
<tr>
<td>• Isolated cerebral, renal and peritoneal disease</td>
</tr>
<tr>
<td>• Chronic subcutaneous infection</td>
</tr>
</tbody>
</table>

A. Axial T2-weighted image shows edema and induration of the left cheek and the left nasolabial fold along with diffuse sinus disease.

B (pre-contrast) and C (post-contrast). Axial T1-weighted images show an inflammatory mass with enhancement. Most commonly seen in diabetics. Patients present with facial pain and headache, and development of black ulcers reflects characteristic tissue necrosis.

High resolution CT (HRCT) of chest from a diabetic patient with pulmonary mucormycosis showing consolidation and cavitation in the right middle lobe. Seen mostly in patients with severe immunocompromise. Patients with COPD on chronic steroid treatment are also at risk. Subacute presentation is seen in some patient populations.

Orbital mucormycosis

Non-contrast CT of the orbits shows left-sided proptosis and infiltration of the retrobulbar fat. The orbital globe is deformed consistent with necrosis. The patient had poorly controlled diabetes and presented with loss of vision in the left eye along with periorbital ecchymosis and facial pain. Ventration of the orbit was carried out. Histopathology revealed broad non-septate hyphae consistent with mucormycosis.

Typical tissue necrosis. Due to angioinvasive nature of mucoraceous molds, there is ischemia, necrosis and gangrene of tissue. Predominantly involves epidermis and dermis.

Soft tissue mucormycosis

Plain x-ray shows soft tissue defect in the popliteal and infrapopliteal region of the left lower limb.

Mucorales, growth on tissue on gross examination

Tissue gangrene. Infection is often secondary to trauma, burn, surgery, systemic infection at any other site, and use of contaminated dressings.

Mucorales, microscopy on 10% KOH wet mount smear

Growth of fluffy mucoraceous molds at tissue incubated at room temperature.

Typical ribbon-like aseptate hyphae. (x40)
Mucorales, microscopy on 10% KOH wet mount smear Fig. 3.3-9

Typical ribbon-like aseptate hyphae. (x40)

Mucorales, Gram stain Fig. 3.3-10

Hyphae of mucoraceous molds. (x100)

Mucorales, H&E stain of tissue Fig. 3.3-11

Broad aseptate hyphae. (x100)

Mucorales, culture on SDA Fig. 3.3-12

Rapid growth of mucoraceous molds within 12 hours of inoculation.

Absidia corymbifera, culture on SDA Fig. 3.3-13

White to pale grey colonies.

Mucorales, H&E stain of muscle tissue Fig. 3.3-14

Broad aseptate hyphae. (x100)

Mucorales, culture on SDA Fig. 3.3-15

Rapidly growing lid lifter colonies filling the petri dish.

Rhizopus spp., culture on SDA Fig. 3.3-16

Mucor spp., culture on SDA Fig. 3.3-17

Grey-to-black older colonies around the rim of the plate.

Rhizopus spp., LPCB wet mount preparation Fig. 3.3-18

Flask-shaped sporangia. This mold is very difficult to sporulate. (x40)

Rhizopus spp., LPCB wet mount preparation Fig. 3.3-19

Round sporangia and internodal rhizoids. (x40)

Absidia spp., LPCB wet mount preparation Fig. 3.3-20

Small pear-shaped sporangia. (x10)

Apophysomyces spp., LPCB wet mount preparation Fig. 3.3-21

Pear-shaped sporangia and prominent apophysis (arrow). This mold is very difficult to sporulate. (x40)

Saksenaea vasiformis, LPCB wet mount preparation Fig. 3.3-22

Flask-shaped sporangia. This mold is very difficult to sporulate. (x40)

Syncephalastrum spp., LPCB wet mount preparation Fig. 3.3-23

Cunninghamella spp., LPCB wet mount preparation Fig. 3.3-24

Finger-like tubular sporangia arranged on a vesicle. (x40)

Vesicles covered with spine-like denticles. (x40)
Entomophthorales

In immunocompetent hosts, *Entomophthorales* cause distinct cutaneous syndromes (entomophthoromycosis). In immunocompromised hosts, the species causes rare opportunistic pulmonary and disseminated infection similar to that of *Mucorales* fungi. Some species have a predilection for certain sites:

- *Basidiobolus ranarum* is a cause of subcutaneous infection, also known as basidiobolomycosis.
- *Conidiobolus coronatus* or *Conidiobolus incongruus* is the most common cause of rhinofacial infection, also known as conidiobolomycosis.

Clinical Presentation

Subcutaneous entomophthoromycosis
Chronic subcutaneous infection

Fig. 3.3-25
Fig. 3.3-26

Extensive tissue ischemia and necrosis secondary to infection with *Basidiobolus* spp.

Visible deformation of facial contours secondary to infection with *Conidiobolus* spp.

Fig. 3.3-27
Fig. 3.3-28

Club shaped spores and intercalary zygosporic. (x100)

White colonies.

Fig. 3.3-29
Fig. 3.3-30

Direct microscopy from tissue biopsy reveals parrot beak shaped zygospore. (x40)

Single-celled round spores that later bear a broad tapering projection. (x40)

Dermatophytes

Afia Zafar

Dermatophytes are a group of closely related fungi that can be described as anthropophilic, zoophilic or geophilic depending upon whether their normal habitat is human being, animal or soil. Dermatophytoes or infection of superficial keratinised tissues (skin, nail and hair) are characterised by ring-shaped lesion. Skin scrapings show hyaline septate branching hyphae or arthroconidia.

Table 3.5: Dermatophytes

<table>
<thead>
<tr>
<th>Epidermophyton</th>
<th>Trichophytton</th>
<th>Microsporum</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. floccuosum</td>
<td>T. mentagrophytes</td>
<td>M. canis</td>
</tr>
<tr>
<td>T. rubrum</td>
<td>M. audouinii</td>
<td></td>
</tr>
<tr>
<td>T. verrucosum</td>
<td>M. equinum</td>
<td></td>
</tr>
<tr>
<td>T. tonsurans</td>
<td>M. fulvum</td>
<td></td>
</tr>
<tr>
<td>T. violaceum</td>
<td>M. gypseum</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.6: Types of dermatophytoes

- Tinea capitis (head)
- Tinea corporis (body)
- Tinea unguinum (nail)
- Tinea pedis (foot)

Clinical Presentation

Tinea corporis
Tinea barbae with secondary bacterial infection

Fig. 3.4-1
Fig. 3.4-2

Female patient presented with a 3-week history of itchy rash on chest and recent development of erythematous annular plaques of variable sizes. Lesions resolved after treatment with systemic and topical antifungals.

Male patient presented with 2-month history of itchy erythematous rash with inflammatory papules and pustules localised to coarse facial hair (beard). Lesions resolved after improvement in hygiene and treatment with systemic and topical antifungals, and antibiotics.
Patient presented with 6-week history of patchy hair loss, erythema, nodular and pustular lesions, kerion formation, and scarring. Lesions resolved after treatment with systemic terbinafine for 8 weeks and topical antifungal.

Patient presented with 2-week history of multiple, itchy annular plaques on arm. Responded to topical antifungals.

Patient presented with 1-month history of an itchy and enlarging annular plaque lesion on leg. Treated with topical antifungals.

Female patient presented with 12-month history of nail dystrophy of one toe nail gradually involving all toe and finger nails on both hands and feet. There was progressive discolouration, thickening and crumbling of nail plates with some degree of onycholysis. Treated with oral terbinafine.

Female patient presented with 5-month history of discrete and confluent asymptomatic patches of hypo- and hyperpigmentation with mild scaling on face. The lesions gradually extended to involve the trunk. Treated with topical antifungals and systemic fluconazole (weekly for 1 month), and counselled about improving hygiene. The causative agent is Malassezia furfur.
Microsporum canis

M. canis is typically hosted by cats and dogs (zoophilic), and causes infections in humans through transmission by direct and indirect contact. It is the most common cause of tinea capitis and tinea corporis in humans. On microscopic examination, it displays characteristic macroconidia as well as microconidia.

- Slow growing (5 cm in 1 week), pale buff to white colony, with yellow to colourless radiating edge.
- Predominantly large macroconidia concentrated in the centre of the colony. (x10)
- Spindle-shaped microconidium with rough thickened wall and curved to one side. (x40)

Microsporum gypseum

M. gypseum is commonly found in humid soil (geophilic), and results in hair, skin and nail infections.

- Slow growing colony (4-5 cm in 1 week), powdery in texture and buff to cinnamon colour.
- Buff to pinkish colour colony.
- Numerous macroconidia and very few microconidia. Macroconidia are elliptical with thin roughened walls and 4-6 septa. (x40)
Trichophyton rubrum

T. rubrum is an obligate human pathogen not found in environment. It is a common cause of athlete’s foot, ring worm and jock’s itch.

Deep red, brown, yellow and orange coloured colony.
White granular or fluffy colonies on front.

T. rubrum, reverse view of culture plate
T. rubrum, LPCB wet mount preparation
T. rubrum, LPCB wet mount preparation

Sparse clubbed microconidia, formed along the sides of the hyphae. Macroconidia absent. (x10)

Trichophyton mentagrophytes

T. mentagrophytes is found in warm and humid places such as swimming pools and public showers, and results in tinea capitis, tinea corporis, and tinea pedis.
Culture on SDA shows flat powdery to granular colonies that appear white to cream on front and cream to brown on reverse with radiations (not shown).

T. mentagrophytes, LPCB wet mount preparation

Numerous round, smooth-walled micronidia along branching hyphae. Typically found in dense clusters. Macroconidia are cylindrical with thin walls and 3-4 septa. Sometimes spiral hyphae are seen (not shown). (x40)

Trichophyton tonsurans

T. tonsurans is found in indoor environments, and causes tinea capitis and tinea corporis.
Colonies on SDA are white powdery, flat sometime folded in the centre in the front and yellow to reddish brown on reverse (not shown).

T. tonsurans, LPCB wet mount preparation

(A) Abundant microconidia, large oval to club shaped, growing alongside hyphae; (B) Numerous macroconidia; (C) Up to 10 septa sometime loose content and structure. (x40)
Trichophyton violaceum

T. violaceum is commonly found in environment, and usually isolated in tinea capitis. Microscopically, *T. violaceum* reveals septate hyphae, often distorted, with micro- and macroconidia extremely rare (not shown).

Mixed culture of *T. violaceum* and *T. tonsurans*, front view of culture plate on SDA

Glabrous textured, heaped-up purple-to-deep red colonies of *T. violaceum* (marked by arrow) growing on SDA from skin scrapings of a taenia imbricata patient. Larger buff-coloured felt-like colonies of *T. tonsurans* can also be observed arising from the same site. Both isolates have the same colour on front and reverse. Growth of *T. violaceum* is very slow, taking more than 7 days; *T. tonsurans* is relatively faster, taking 4-5 days.

Epidermophyton flocculosum

E. flocculosum is a common flora of humans, domesticated and wild animals, and found in gyms and showers. It is known to cause tinea pedis, tinea cruris, tinea corporis and onychomycosis.

Culture on SDA shows flat, powdery khaki colonies with colourless submerged edges in front and pale brown on reverse (not shown).

Fig. 3.4-26

Predominantly oval- and club-shaped macroconidia with smooth medium thickness walls and 2-4 septa. (x40)

Hyaline Molds

Kausar Jabeen and Joveria Farooqi

The fungi causing hyalohyphomycosis are characterised by the presence of septate, hyaline and non-pigmented hyphae. Notable fungi in this group include *Fusarium*, *Penicillium*, *Scedosporium*, *Acremonium*, *Paecilomyces*, *Trichoderma* and *Scopulariopsis*. Depending on the immune status of the host, infection caused by these fungi varies from colonization, superficial infections and subcutaneous infections to disseminated diseases. Most fungi in this group cause life-threatening opportunistic infections. Many of the hyaline molds exhibit decreased susceptibilities to several antifungal agents.

Clinical Presentation

Pneumonia secondary to Pseudallescheriasis

Computed tomography scan of chest shows two thick-walled cavities in right lung resulting from *Scedosporium apiospermum*. The first cavity measuring 4.2 by 2.4 cm has a small fungal ball. The second larger cavity (10 by 4.5 cm) in the right lower lobe has a fungal ball measuring 47 by 29 mm, which extends across major fissure to involve the upper lobe as well.

Chronic skin infection

Nodular lesion caused by *Fusarium* species.

An ulcerative lesion caused by *S. apiospermum*.

Fig. 3.5-1 Copyright © Springer, *Infection*, 44, 2016, 127-32, doi: 10.1007/s15010-015-0840-4
Acremonium species

Acremonium is an environmental pathogen typically found in soil, and infection is secondary to penetrating trauma. Common agent of nail infections, mycetoma and corneal infections, and can cause disseminated infections in immunosuppressed patients.

Colonies grow rapidly and mature in 5-7 days. Texture of colonies could be powdery, cottony or felt like. Colour of colonies vary according to species to white, light pink, pale rose, yellowish with a colourless reverse. Colonies are initially white but later may develop pink, orange, purple or peach tinge depending on species. Reverse is pale but may be dark depending on species.

Septate hyphae arranged in distinct bundles. Conidiophores are long, erect and delicate; they bear clusters of conidia arranged as wet masses on the tip. These conidia are easily disrupted from the tip of conidiophore. (x10)

Fig. 3.5-6 A. Acremonium spp., front view of culture on SDA. Fig. 3.5-7 Acremonium spp, microscopic examination.

Fusarium species

Fusarium is commonly found in soil and debris, and inoculation occurs following trauma, instrumentation or insertion of contaminated central venous lines. In immunocompetent patients, *Fusarium* may cause superficial nail and soft tissue infections as well as peritoneal and osteoarticular infections. Populations that are most at risk for invasive disease are patients with hematological malignancies and bone marrow transplant patients. Cutaneous lesions are present in 60 to 80 per cent of disseminated fusariosis, and blood cultures are frequently positive. The characteristic feature of *Fusarium* species on culture is the production of sickle-shaped multiseptate macroconidia.

Fig. 3.5-8 *Fusarium spp., Gram stain from positive blood culture sample.*

Fig. 3.5-9 Fig. 3.5-10 *Fusarium spp., LPCB wet mount preparation.*

Septate hyphae with short tapering conidiophore (conidiophore may be long in some species) are seen. These conidiophore bear sickle-shaped, banana-shaped or canoe-shaped macroconidia with three to five septa. Sparse to abundant microconidia arranged singly or in slimy balls could also be seen depending on species. (x40)

Fig. 3.5-11 *Fusarium spp., LPCB wet mount preparation.*

Colonies grow rapidly and mature in 3-5 days. Colonies are initially white but later may develop pink, orange, purple or peach tinge depending on species. Reverse is pale but may be dark depending on species.

Fig. 3.5-12 *Fusarium spp., LPCB wet mount preparation.*
Scedosporium species

Scedosporium is mainly found in the environment and can be responsible for a spectrum of infections ranging from mycetoma to disseminated infections depending on host immunity status. The species is notorious due to its neurotropic tendency and antimicrobial resistance. Clinically significant species are S. apiospermum, S. boydii and S. prolificans. S. prolificans especially is resistant to virtually all antifungal classes and is associated with high mortality.

Scedosporium apiospermum

Colonies grow rapidly and mature in 5 to 7 days. Front view initially shows colonies that are white but later turn grey.

S. apiospermum, reverse view of culture on SDA

Initially white and then turns dark brown or black.

S. apiospermum, LPCB wet mount preparation

Septate hyphae with short and long conidiophores. These conidiophore bear oval conidia arranged singly or in small clusters. Occasionally conidiophores are arranged in bundles (Graphium state) that diverge and at the edge bear single conidia. The sexual stage can be induced by subculturing on CMT or PDA. Ascocarps are black and round with elliptical ascospores. (x40)

Scedosporium prolificans

Colonies grow rapidly and mature in 5 days. Colonies are grey to brownish, spreading, with scant, cobweb appearance (not shown). On reverse view, colonies appear dark grey to black.

On microscopy, septate hyphae bearing short conidiophores are seen. Conidiophores have swollen base and long tapering tip that bear conidia singly or in clumps at the apex. Conidia are pigmented, oval or round with a truncated base.

Paecilomyces species

Paecilomyces have been rarely implicated as a cause of invasive infection in immunosuppressed patients. Morphologically they resemble Paecilomyces species, however, their colonies are never green or blue-green and they have long, slender and divergent phialides.

Paecilomyces variotii

Colonies grow rapidly and mature in 3-5 days, are olive brown in colour with a pale reverse (not shown).

On microscopy, phialides are elongated, swollen at bases and taper into a long neck. These phialides may occur singly, in pairs, in leaf-like pattern or in brush-like pattern (not shown).

Purpureocillium lilacinum

Colonies are white changing to lilac with a pale or deep purple reverse.

P. lilacinum, LPCB wet mount preparation

Phialides are densely clustered. These phialides bear long divergent chains of hyaline to pigmented, smooth or rough, sub-spherical to oval single-celled conidia. Previously called Paecilomyces lilacinum. (x10)

Trichoderma species

Trichoderma is commonly found in soil as well as air. Its typical clinical manifestations include localised cutaneous lesions, peritonitis complicating peritoneal dialysis, pulmonary disease (fungus ball), and disseminated infections. Antimicrobial activity is variable and surgical resection of localised infection is recommended whenever feasible.

Trichoderma spp., front view of culture on SDA

Colonies grow rapidly, fill the petri dish and mature in 5 days. Colour of colonies is initially white and later develops green patches with a colourless or tan reverse.

On microscopy hyphae are septate and bear short and often branched conidiophores. Conidiophores have phialides with broad bases and narrow apex that in turn have clusters of round, single-celled conidia. (x10)
Penicillium species

Penicillium is commonly found in soil, damp objects and spaces, and can contaminate food (most common cause of spoilage of fruits and vegetables). Characterised by their blue and green colour due to the large quantities of green, blue and yellow spores produced.

Colonies are bluish grey-green, later turning yellowish red with diffusible red pigment. This species is the only dimorphic Penicillium species, converting to white to tan, dry, soft yeast-like colonies at 37°C in 7-14 days on SBA or Brain Heart Infusion agar.

Microscopic morphology of Penicillium species resembles a broom: phialides consist of 3-5 metulae, depending on species, and chains of spherical to oval conidia arising in basipetal pattern. The absence of a vesicle differentiates it from Aspergillus spp., while multiple phialides arising from a single conidiophore distinguish it from Scopulariopsis spp.

Chrysosporium species

Commonly found in soil and debris as well as indoors in damp wood, cellulose structures and wallpaper. Chrysosporum spp. can result in severe invasive disease in immunosuppressed patients. Unlike Penicillium, it produces pyriform conidia with truncated bases.

Colonies grow rapidly and mature in 5-7 days. Depending on species colour of colonies varies from white to tan to pink or light orange with a white or tan reverse (highly variable depending on species).

On microscopy, septate hyphae are seen. Conidiophores can be of variable length and branched and unbranched. Conidia are single-celled and club-shaped and grow directly along the hyphae or on the conidiophore. Intercalary cylindrical conidia are occasionally seen. (x10)

Scopulariopsis species

Scopulariopsis is a common filamentous fungus found indoors in carpets, flooring, cellulose structures and swimming pools. It can cause a range of diseases from superficial infection such as onychomycosis to locally invasive soft tissue infections and disseminated disease in immunosuppressed patients. Scopulariopsis produces conidiophores that closely resemble that of Penicillium species.

Septate hyphae with short conidiophores terminating in branched heads with cells that are swollen at base and narrow at apex. These cells bear chains of lemon-shaped, rough and thick-walled conidia with a flattened base. (x10)
Dematiaceous Molds and Melanised Fungi

Joveria Farooqi and Kausar Jabeen

Dematiaceous fungi are a group of fungi with melanin in their cell walls. Being environmental fungi, their sources are plant materials and soil. Most lesions arise due to traumatic implantation or inhalation and deep mycoses result either from haematogenous dissemination or contiguous invasion.

Lesions may be divided into three main categories on the basis of morphology and histopathological features:

- **Chromoblastomycoses** are pathognomically characterised by the presence of rounded copper-coloured structures with cross-walls called sclerotic bodies and cause nodular and cauliflower-like subcutaneous lesions.
- **Pheohyphomycoses** are characterised by moniliform and toruloid (yeast-like) hyphae which may be cutaneous, subcutaneous or deep lesions e.g. cerebral, pulmonary, bone or spinal abscesses.
- **Eumycetomas** usually involve exposed areas of the body and are distorted nodular lesions giving rise to draining sinuses with granules. Granules are frequently dark coloured, and microscopically show hyphal forms.

Clinical Presentation

- **Chromoblastomycosis**
- **Pheohyphomycoses**
- **Eumycetomas**

Chromoblastomycoses

Nodular and cauliflower-like subcutaneous lesions containing sclerotic bodies

Pheohyphomycoses

Yeast-like cells and varied hyphal forms

Eumycetomas

Chronic tumour-like lesion with draining sinuses and granules in pus

- Allergy
- Cutaneous & Subcutaneous
- Systemic
- Pulmonary
- CNS
- Disseminated
- Other sites

Phaeohyphomycosis

Fig. 3.6-3

Deep phaeohyphomycoses present as abscesses involving one or several organs. This is an image of a large brain abscess due to *Neoscytalidium* species.

Phaeohyphomycosis, 10% KOH wet mount

Fig. 3.6-5

Smear from patient with brain abscess shows numerous pigmented hyphae. (x10)

Phaeohyphomycosis, H&E stain

Fig. 3.6-4

Biopsy of a brain abscess shows golden brown septate hyphae. (x40)

Phaeohyphomycosis, Gram stain

Fig. 3.6-6

Stain sample from a patient with brain abscess shows pigmented septate hyphae. (x100)

Eumycetoma

Fig. 3.6-7

Mount of a eumycetoma granule showing distorted septate hyphae which may themselves be pigmented or secreting a dark pigment into the surrounding tissue. (x40)

Eumycetoma, 10% KOH wet mount smear

Fig. 3.6-8

Nodular subcutaneous lesions with cauliflower-like outgrowths on exposed areas of the body (hands, feet and face).

Nodular subcutaneous lesions with cauliflower-like outgrowths on exposed areas of the body (hands, feet and face).
A 20-year-old patient presented with a swollen and discharging sinus over the medial side of right foot. Radiograph shows a soft tissue swelling overlying the big toe along with sclerosis and destruction of the proximal phalanx as well as the metatarsophalangeal joint (arrow). The appearances are consistent with fungal osteomyelitis and arthritis.

Identification

- Dematiaceous molds are differentiated based on the rates of growth (slow growing versus rapidly growing) and then further divided based on the origin of conidia:
 - Holoblastic: conidia arise with all layers of cell wall from conidiophores.
 - Enteroblastic: conidia arise from internal layer of conidiophore by bursting out of the outer cell wall.
 - Thallic: conidia form by breaking off from the main hyphae after lysis of the separating cells.
- Common dematiaceous fungi can be identified using the simple schema shown.

Alternaria species

Alternaria is one of the most common rapidly growing black molds found in the environment and soil. It is frequently isolated from fungal polyps, sputum samples, nails of patients with onychomycosis and other infections due to traumatic implantation e.g. keratitis, soft tissue infections and even brain abscesses.

Culture on SDA leads to rapidly growing colonies (>5 mm in 5 days) that are olivaceous green at the front and black on reverse side (not shown). Initially, colonies are flat and then become fluffy with a white downy border.

Microscopically, the tapering conidia arise in chains and have both transverse and vertical septae giving a muriform appearance. The conidiation is considered sympodial as conidia arising from the same conidiophore are seen in various stages of development. (x40), (x10) (see arrow)
Curvularia species

Curvularia is a saprophytic rapidly-growing black mold with similar distribution to Alternaria, Drechslera and Bipolaris spp. Human infections with Curvularia species are rare, but can lead to fatal cerebral disease. Colonies are fluffy in texture and appear a deep black both on front and reverse, giving off a bluish hue as they age (not shown).

Curvularia spp., LPCB wet mount preparation

Both show fluffy colonies with olivaceous black surface on the front and a dark brown tinge on reverse side (not shown).

Bipolaris and Drechslera species

Rapidly growing black molds found in the environment. Similar to Alternaria species in clinical relevance, they are commonly isolated from nasal sinuses, respiratory specimens and wounds contaminated with environmental debris. To differentiate between Bipolaris and Drechslera, perform the germ tube test and observe germination of the hyphae from the hilum:

- **Bipolaris** – germ tubes arise along the long axis of the conidia.
- **Drechslera** – germ tubes arise at right angle to the long axis of the conidia.

Both show fluffy colonies with olivaceous black surface on the front and a dark brown tinge on reverse side (not shown).

Bipolaris spp., LPCB wet mount preparation

Microscopically, they both have elongated conidia with transverse septae with 3-6 cells. Conidia are holoblastic and sympodial. Bipolaris species have more abundant conidia arising at the tips of conidiophores along their long axis while Drechslera species have fewer conidia arising at right angles to the conidiophores. (x40)

Exserohilum species

A rapidly growing black mold, Exserohilum gained fame during the 2012 iatrogenic fungal meningitis outbreak when a batch of epidural steroid injections was found to be contaminated with its spores. Clinical niche otherwise is similar to other saprophytic melanised fungi with sinusitis as the main manifestation. Colonies have fluffy grey surface on front and a dark reverse side (not shown).

Exserohilum spp., LPCB wet mount preparation

Hyphae are septate and pigmented. Holoblastic conidiation gives rise to elongated conidia with 8-12 cells divided by transverse walls and ending in a prominent hilum. (x40)

Cladosporium species

Cladosporium is an environmental contaminant that can cause serious disseminated haematogenous infections. Colonies grow slowly and mature within 3 weeks. Colour of colonies varies from dark grey, grey green to dark green on front, and appears black on reverse surface (not shown). A distinctive feature is the species inability to grow at temperatures above 37°C. Conidia are holoblastic and can be dislodged easily and resemble shields. (x40)

Cladosporium spp., LPCB wet mount preparation

On microscopy hyphae are dark and septate, conidiophore have medium to long chains of conidia. Conidia are brown, smooth, oval with scar of attachment. Maximum growth temperature of the colonies is 35-37°C. Conidia are holoblastic and can be dislodged easily and resemble shields. (x40)

Cladophialophora species

Cladophialophora is a mold that is an environmental contaminant and can cause serious disseminated hemogenous infections.

Cladophialophora bantiana

C. bantiana has a tropism for central nervous system and infection results in brain abscess. Colonies growth rate is slow and mature in 2 weeks. Colour of colonies varies from olive green to brown to black; reverse is black (not shown). The distinct feature of this species is thermotolerance and ability to grow at 42°C. On microscopy dark septate hyphae are seen. Conidiophores are long with unbranched chains of pale brown, oval conidia (not shown). No scar of attachment is seen in conidia.

Cladophialophora spp., LPCB wet mount preparation

Microscopically, they both have elongated conidia with transverse septae with 3-6 cells. Conidia are holoblastic and sympodial. Bipolaris species have more abundant conidia arising at the tips of conidiophores along their long axis while Drechslera species have fewer conidia arising at right angles to the conidiophores. (x40)
Sporothrix schenkii

S. schenkii is a dimorphic fungus with a global distribution as an environmental contaminant. It is a known agent of sporotrichosis, a subcutaneous fungal infection that may involve lymphatic vessels, lymph nodes, bones and joints, as well as disseminated infection in immunosuppressed patients.

Colonies grow rapidly and mature in 5-7 days. Characteristics vary depending on incubation temperature:
- At 25-30°C initial colonies are white to grey that become black with age with a grey to black reverse. Colonies can be flat, leathery or wrinkled (not shown).
- At 35-37°C colonies are cream and yeast-like and may require repeated subcultures to obtain good yeast phase (not shown). Sometimes conversion to yeast form is incomplete and therefore an inhibited and slower growth similar to that at 25-30°C is seen.

Cladophialophora carrionii

C. carrionii mainly causes chromoblastomycosis. Colonies grow slowly and mature within 3 weeks. Colour of colonies varies from dark grey, grey green to dark green with a black reverse (not shown). Maximum growth temperature of the colonies is 35-37°C.

Exophiala species

Exophiala is a slow-growing annelidic fungus found in decaying wood and soil. Common cause of subcutaneous infections and cerebral mycosis.

Exophiala spp., front view of culture on SDA agar

Exophiala jeanselmei

Colonies are olive green to greenish black to black with a black reverse (not shown). Maximum growth temperature is 37°C. Does not grow at higher temperature. Matures in 2 weeks.

CAUTION: *C. bantiana* is a Hazard Group 3 pathogen and can be transmitted to health care workers through respiratory route. Colonies should be handled in a biosafety cabinet and slide cultures should not be performed.
Exophiala dermatitidis

On culture, colonies are olive grey to greyish black with a dark reverse. May have a diffusible brown pigment. Maximum growth temperature is 42°C and maturity takes 3-4 weeks (not shown).

E. dermatitidis, LPCB wet mount preparation

Abundant budding yeast like cells with few septate hyphae with conidiophores that are flask-shaped and lack a collarette. Few brownish conidia are seen that accumulate in groups at the apex or down the sides of conidiophores or along the hyphae. (x10)

Fonsecaea pedrosoi

F. pedrosoi is the most common cause of chromoblastomycosis worldwide. Single isolate may have two to three types of conidiation.

Conidiation types include Fonsecaea type (conidiophore: erect, septate and sympodial with distal end swollen; conidia: single-celled; long chains: not formed); *Rhinocladiella* type (conidiophore: erect; conidia: single-celled either on the distal end of conidiophore or along the side); *Cladosporium* type (conidiophore: erect; conidia: scarred and in short chains; shield cells seen); and *Phialophora* type (vase-shaped phialides with terminal collarettes having oval conidia).

F. pedrosoi, front view of culture on SDA

Day 5. Colonies are dark green, grey or black, flat and velvety. Reverse view is black. Culture on SDA shows colonies that grow slowly and mature in around 14 days.

Day 15. Colonies are slow growing.

Rhinocladiella mackenziei

R. mackenziei is a mold commonly found in arid regions of Middle East, Afghanistan, Pakistan and India. The majority of infections occur in immunocompetent individuals. In Pakistan, *R. mackenziei* has been as an agent of cerebral phaeohyphomycosis, which has an extremely low survival rate.

R. mackenziei, front view of culture on SDA

Growth is dark grey-brown to black. Colonies are slow growing and mature in 3-4 weeks. Some isolates do not grow up to 4 weeks and grow initially as black discoulouration of media. Reverse is black.

On microscopy, hyphae are pigmented, septate with dark brown oval conidia. Conidiation is poor on first isolation and develops later after subsequent subcultures. The characteristic diagnostic feature is the *Rhinocladiella* type sporulation that gives the "mickey mouse appearance": multiple budding with thick-walled cells. This is not seen with any other type of sporulation even after prolonged incubation. (x40)
Neoscytalidium dimidiatum

Mold commonly found in tropical and subtropical region environments, causing infection secondary to trauma. Results in dermatomycosis, onychomycosis and, very rarely, systemic infections.

Colonies grow fast and mature in 3 days. Surface is initially white but rapidly changes to dark brown or black. Reverse is black. Woolly in texture and may fill the air space of the culture plate.

Septate hyphae without conidiophore are seen. Dark brown wider and hyaline narrow arthrospores are seen in abundance. These arthroconidia are either one-celled or two-celled separated by a thick septum. Shape of arthrospores varies from rectangle, square, oval, or barrel shaped. There are no empty cells between consecutive arthrospores. (x40)

Chaetomium species

Chaetomium is a mold found in environment particularly water-damaged buildings and can result in serious life-threatening systemic infections.

On culture, colonies grow fast and mature within 3-5 days. On front, initially colonies are white but with aging turn pale buff, olive green and then greyish green. Reverse is buff (may be brown to black) with sometimes a green, yellow or red diffusible pigment (not shown).

Close-up view of an ascocarp, LPCB wet mount preparation

ASCOCARP

Phoma species

Phoma species is typically an environmental contaminant causing infections in plants but can cause rare fatal disseminated fungal infections in humans. On culture on SDA, colonies are fast-growing and mature within 3-5 days. On gross examination, colonies are reddish to greyish brown on front and brown to black on reverse (not shown). Sometimes a reddish brown diffusible pigment is seen.

Hormonema dematioides

H. dematioides is a yeast-like fungus found in environment that causes rare but clinically-significant infection in immunosuppressed patients.

On culture on SDA, colonies mature rapidly in 3-5 days. Initial colonies are buff and smooth with a pink tinge (not shown). On extended incubation, colonies are brownish black on front and black on reverse.

Ascocarp is a large brown oval structure with unbranched wavy and dark-coloured hyphae radiating from it. They contain asci that are club-shaped and contain 4-8 spores. Ascospores are lemon-shaped, brown and single-celled. (x40)
Phaeoannellomyces werneckii

Also known as *Hortaea werneckii*, this fungus is found in soil, compost and wood, and is a causative agent of tinea nigra.

On culture, colonies are slow growing and can take up to 3 weeks to mature. Initial colonies are yeast-like. Growth on front is olive-black and black on reverse (not shown).

P. werneckii, LPCB wet mount preparation

Microscopy of young colonies reveals pale or dark brown yeast-like cells with a central septum. These cells are pointed at one end and rounded at the other end. Older colonies develop septate hyphae with thick brown walls. (x10)

Madurella species

Madurella is a common soil fungus found in tropical regions and causes infections secondary to trauma. Infection results in mycetomas localised to cutaneous and subcutaneous tissues, fascia and bone. On culture, colonies are slow growing and may take up to 14 days to mature.

Madurella mycetomatis

Culture on SDA produces colonies that are cream, yellow to olive brown in front, and on reverse brown with a diffusible pigment (not shown).

On microscopic examination, septate hyphae are visible that are usually sterile. At times, culture on CMT agar produces phialides that bear small oval to round conidia (not shown).

Madurella grisea

M. grisea, front view of culture on SDA

<table>
<thead>
<tr>
<th>Colony on SDA</th>
<th>Fig. 3.6-37</th>
<th>Colony on SDA</th>
<th>Microscopic examination</th>
<th>Fig. 3.6-38</th>
</tr>
</thead>
</table>

Colonies are folded and dark brown to black. On reverse, colonies are dark. A diffusible pigment may be seen. Colonies do not grow at 37°C.

Dark and wide septate hyphae. The hyphae are made of chains of round cells. Apart from these hyphae, thinner septate hyphae are also seen. These hyphae are usually sterile. Chlamydoconidia are rarely produced. (x40)
Antifungal Susceptibility Testing

Joveria Farooqi

Improvements in diagnostic tools have allowed an increasing number of invasive fungal infections to be diagnosed and treated with antimicrobials. At the same time, resistance to antifungals has emerged as a significant problem. Susceptibility to antifungals is well-studied for the yeast form with established clinical breakpoints. In the clinical setting, three main families of antifungicals are used to treat infections: polyenes (amphotericin B, nystatin and natamycin); azoles (itraconazole, fluconazole, voriconazole, posaconazole and isavuconazole); and echinocandins (caspofungin, micafungin and anidulafungin).

Currently, standardised methodology for susceptibility is available for Candida species, Cryptococcus species, and non-dermatophyte molds. However, clinical breakpoints are available for only certain Candida species and have not yet been established for Cryptococcus species and molds. Susceptibility testing for yeasts can be incorporated in clinical reporting as its performance is no more difficult than that of bacteria. Maintaining sterility during testing and quality control for molds, on the other hand, are much more exacting tasks than for yeasts.

Susceptibility Testing for Candida species

In this chapter we have opted to solely focus on the methods to determine antifungal susceptibility against the Candida species considering the availability of definitive data — both CLSI and EUCAST have standardised disc diffusion and broth microdilution methodologies and breakpoints (clinical or epidemiological cut-offs).

Disc Diffusion Method

On an agar plate, colonies of fungal isolate are tested against antifungals. Clear zones around each disk (zones of inhibition) are measured to determine susceptibility and MICs.

Prerequisites

- Müller-Hinton agar plate supplemented with 0.5 µg/ml methylene blue and 2% dextrose.
- Glass tube with 0.85% sterile saline solution.
- Isolated yeast colonies from a 20-24 hours old culture grown on an antibiotic-free medium (SBA, SDA or PDA).

Procedure

- Make a suspension of 0.5 McFarland turbidity with a few colonies from a 20-24 hours old culture of Candida species on an antibiotic-free medium.
- Soak a sterile cotton swab in the suspension, rolling it along the glass wall of the tube to get rid of excess moisture.
- Make lawn on RPMI agar.
- Soak sterile forceps place antifungal discs on the agar surface and incubate the plates at 35±1°C for 20-24 hours in ambient air.
- Measure zone diameters for each antifungal:
 - For azoles measure zones from where there is 50-80% inhibition of growth.
 - For echinocandins measure zones from where there is complete inhibition of growth.
- Interpret readings according to the specific Candida species (Table 4.1).
- Compare with QC ranges for the recommended ATCC strains (Table 4.2).

Minimum Inhibitory Concentration Method – E-test

A plastic strip is impregnated with gradually decreasing concentration of a particular antibiotic. The method is convenient but costly since a new strip is needed for each antibiotic. Breakpoints of broth microdilution method are applied, although not yet approved for E-test.

Prerequisites

- RPMI agar with phenol red and 2% dextrose. For RPMI media preparation, refer to EUCAST guidelines on antifungal susceptibility testing.
- Glass tube with 0.85% sterile saline solution.
- Isolated yeast colonies from a 20-24 hours old culture grown on an antibiotic-free medium (SBA, SDA or PDA).

Procedure

- Make a suspension of 0.5 McFarland turbidity with a few colonies from a 20-24 hours old culture of Candida species on an antibiotic-free medium in 0.85% saline.
- Soak a sterile cotton swab in the suspension, rolling it along the glass wall of the tube to get rid of excess moisture.
- Make lawn on RPMI agar.
- Use sterile forceps to place E-test strips on the surface of the agar taking care not to move the strip and ensuring there are no air bubbles between the strip and the agar surface.
- Incubate the plates at 35±1°C for 20-24 hours in ambient air.
- For azoles measure MICs where there is 50-80% inhibition of growth.
- For amphotericin B and echinocandins measure MICs where there is complete inhibition of growth.
- Interpret readings according to specific Candida species (Table 4.1).
- Compare with QC ranges for the recommended ATCC strains (Table 4.2).

Fig. 4.1: Commercially available colourimetric broth microdilution assay, YeastOne Sensititre®, for antifungal susceptibility testing of Candida and Cryptococcus species. Growth of yeast in the wells changes the colour of alamar blue to pink, making MIC reading easier.
Table 4.1: Interpretation of zone diameters and minimal inhibitory concentration according to CLSI

<table>
<thead>
<tr>
<th>Species</th>
<th>Antifungal</th>
<th>Susceptible</th>
<th>Susceptible dose-dependent/intermediate</th>
<th>Resistant</th>
<th>Non-susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ZD</td>
<td>MIC (µg/ml)</td>
<td>ZD</td>
<td>MIC (µg/ml)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mm)</td>
<td></td>
<td>(mm)</td>
<td></td>
</tr>
<tr>
<td>C. albicans</td>
<td>Fluconazole 25µg</td>
<td>≥19</td>
<td>≤2</td>
<td>15-18</td>
<td>4</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>Fluconazole 25µg</td>
<td>≥17</td>
<td>≤0.12</td>
<td>14-16</td>
<td>0.25-0.5</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>Caspofungin 5µg</td>
<td>≥11</td>
<td>≤0.25</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>Fluconazole 25µg</td>
<td>≥17</td>
<td>≤1</td>
<td>14-16</td>
<td>1</td>
</tr>
<tr>
<td>C. krusei†</td>
<td>Caspofungin 5µg</td>
<td>≥11</td>
<td>≤0.25</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>All species</td>
<td>Fluconazole 25µg</td>
<td>≥19</td>
<td>≤8</td>
<td>15-18</td>
<td>16-32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antifungal Susceptible dose-dependent/intermediate</th>
<th>Resistant</th>
<th>Non-susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible</td>
<td>Susceptible dose-dependent/intermediate</td>
<td>Resistant</td>
</tr>
<tr>
<td>ZD (mm)</td>
<td>MIC (µg/ml)</td>
<td>ZD (mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mm)</td>
</tr>
</tbody>
</table>

| *Do not report fluconazole for *C. krusei due to inherent resistance. †All species except for *C. parapsilosis and *C. guilliermondii. *C.lusitaniae rapidly develops resistance to amphotericin B on therapy; do not report for *C. lusitaniae. |

Table 4.2: Quality control ranges for yeast susceptibility testing

Perform quality control every time a new batch of Müller-Hinton agar with methylene blue or RPMI agar is made.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Antifungal (disc content in µg)</th>
<th>MIC range (µg/ml)</th>
<th>Zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. parapsilosis ATCC 22019</td>
<td>Amphotericin B 0.25-2.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fluconazole (25) 0.5-4.0</td>
<td>22-33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voriconazole (1) 0.016-0.12</td>
<td>28-37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Itraconazole 0.12-0.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caspofungin (5) 0.25-1.0-</td>
<td>14-23</td>
<td></td>
</tr>
<tr>
<td>C. krusei ATCC 629B</td>
<td>Amphotericin B 0.5-2.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fluconazole 8.0-64.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voriconazole (1) 0.06-0.5</td>
<td>16-25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Itraconazole 0.12-1.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caspofungin (5) 0.12-1.0</td>
<td>18-26</td>
<td></td>
</tr>
</tbody>
</table>

†Do not report fluconazole for *C. krusei due to inherent resistance. *All species except for *C. parapsilosis and *C. guilliermondii. *C.lusitaniae rapidly develops resistance to amphotericin B on therapy; do not report for *C. lusitaniae.
5

ANTIGEN-BASED TESTS FOR THE DIAGNOSIS OF FUNGAL INFECTIONS
Antigen-based Tests for the Diagnosis of Fungal Infections

Kaiser Jabeen and Joveria Farooqi

Several successful attempts have been made to use non-culture and non-invasive approaches to diagnose fungal infections. Tests are available that can detect specific fungal antigens, the host antibody generated and large macromolecules specific to fungal pathogens. Reliability of results depends on the the microbial burden, time of testing (early versus late in disease process), immunocompetency of the host and the presence of underlying diseases or co-infections. Results must always be carefully interpreted in light of sensitivity and specificity of each test.

Cryptococcal Antigen Testing

This test is based on latex particle agglutination methodology. Latex particles labeled with antibodies specific to cryptococcal capsular antigen are mixed with patient specimens such as CSF and serum, and observed for any clumping.

Procedure

- Instructions in the insert should be followed precisely. As with handling all clinical specimens, gloves should be worn while performing the test.
- Working with CSF
 a. Take at least 0.5 ml (preferably 1 ml) of CSF in a sterile glass tube and boil it for 5 minutes.
 b. Allow to cool. Label the disposable mixing card.
 c. Prepare a 1:100 dilution by taking 25 µl of the heat-inactivated specimen and mixing with 2475 µl of sterile normal saline.
 d. In four separate wells on a slide, place 25 µl of heat-inactivated specimen, 25 µl of the 1:100 dilution, and 25 µl of positive and negative controls. Then add 25 µl of latex reagent in the four wells.
 e. Mix well covering the entire reaction area and rotate at 100 rpm for 15 minutes.
 f. Observe for agglutination (granularity), comparing it with positive and negative controls.
 g. All positive test results should be doubly titrated and maximum titre showing agglutination reported.
- Working with serum
 h. Add 300 µl of serum to a labeled glass tube and mix with 50 µl of pronase reactant, vortex and heat at 56°C for 30 minutes.
 i. Follow steps b. to g. as above.

Interpretation

- Presence of clumping is indicative of the presence of cryptococcal antigen.

Errors

- False positives may occur with presence of silicone, glove latex, protein, Capnocytophaga species and yeasts such as Trichosporon species.
- False negatives may occur with inadequate extraction or prozone phenomenon.

β-D-Glucan Detection

The antigen (1→3)-β-D-Glucan (BDG) is part of the fungal cell wall, not specific to any particular species. Its presence in serum indicates the release of the fungal cell wall antigen into the circulation, seen in invasive fungal infections. Detection of BDG concentration in serum is now established as one of the criteria for diagnosis of probable invasive mycoses.

Errors

- False negatives may occur with inadequate extraction or prozone phenomenon.
- False positives may occur due to lipemic or hydrolysed blood samples (elevated triglycerides and bilirubin are inhibitory) to the sample.

Galactomannan Detection

Galactomannan (GM) is an antigen found in the cell wall of Aspergillus species. Its detection by EIA has been in use for over a decade now as a non-invasive method to improve diagnostic sensitivity of invasive aspergillosis (IA). The test should never be used alone to confirm IA, and it should be interpreted in conjunction with clinical, radiological and culture findings as well as patient risk stratification.

Method

- EIA technique is used to detect the presence of GM antigen in recommended patient specimens, such as serum, bronchial lavage and CSF.

Interpretation

- BDG cut-offs are well established for adults but not for paediatric patients as normal levels may be higher in children.
- Data for neonates and infants less than 6 months is lacking and therefore interpretation may be difficult.
- The site of infection, encapsulation and the amount of BDG produced by certain fungi may affect its serum concentration. The antigen test results will most likely be negative if the infection is due to low producers of BDG, like Cryptococcus spp., zygomycetes (including Absidia spp., Mucor spp. and Rhizopus spp) and Blastomyces dermatitidis in its yeast phase.
- If BDG levels fall in the indeterminate zone, additional testing is recommended after assessing the patient's risk of fungal disease. For high risk patients, sampling is recommended at least 2 to 3 times a week.

Table 5.1: β-D-Glucan interpretative cut-offs

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Breakpoint/cut-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>Negative <60 pg/ml</td>
</tr>
<tr>
<td></td>
<td>Indeterminate 60-80 pg/ml (repeat test recommended),</td>
</tr>
<tr>
<td></td>
<td>Positive >80 pg/ml</td>
</tr>
</tbody>
</table>

Errors

- False positive results may be seen in patients on haemodialysis, receiving albumin or immunoglobulins, on certain antibiotics, exposed to glucan-containing gauze or talc, and those with mucositis. BDG may be tested 3–4 days after the source has been removed.
- False negatives may be due to lipemic or hydrolysed blood samples (elevated triglycerides and bilirubin are inhibitory) to the sample.

Method

- An enzyme immunoassay (EIA) based technique is used to detect the antigen in patient samples, and methodology is according to manufacturer instructions.
- Samples must be obtained very carefully by venipuncture using talc-free gloves.
- BDG is a very sensitive test as laboratory based reagent deterioration or contamination from environmental spores can greatly affect results.
- It is advisable to run the test in triplicates before the performing technologist becomes proficient. Even for the most experienced technologist, the test must be run in duplicates at least.
Interpretation

- An index of <0.5 is considered negative in all samples. However, galactomannan index (GMI) can also be used to assess response to therapy and rising or falling index may be interpreted as failure or response to therapy, respectively.
- A serum GMI value persistently >1.0 is considered a sign of therapeutic failure.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Breakpoint/cut-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>A single serum sample with GMI >0.7, or 2 consecutive samples with GMI > 0.5</td>
</tr>
<tr>
<td>Bronchoalveolar lavage</td>
<td>GMI >1.0</td>
</tr>
<tr>
<td>CSF</td>
<td>GMI >0.5</td>
</tr>
</tbody>
</table>

Errors

- False positives may be seen with laboratory contamination of water bath, ELISA plates or pipettes. Biological false positives may be seen with certain antibiotics (penicillins e.g. ampicillin, amoxicillin, amoxicillin-clavulanate, piperacillin-tazobactam) and bacteraemia.
- False negatives results are based on the extent of angio-invasion and dissemination as well as immunosuppressed state of the patient.
Molecular Methods for the Diagnosis of Fungal Infections

Sadia Shakoor

Molecular approach to diagnostics is fast becoming the accepted standard for a number of bacterial and viral infections, especially for identification of isolates growing in pure cultures. Techniques used for identification include nucleic acid hybridisation probes, DNA sequencing, and peptide nucleic acid fluorescence in situ hybridisation (PNA-FISH). This chapter briefly describes the existing technologies for direct detection of fungal pathogens from clinical samples, their current status and prospects for further development.

Current Status

Despite being around for more than a decade, no recommendations for the use of molecular methods in fungal diagnostics have been made in recent guidelines. Molecular techniques combined with mass spectrometry procedures is a promising emerging diagnostic tool for fungal and bacterial identification alike. Although in the early development and validation stage, it is hoped that this will overcome the challenges faced by other molecular tests for fungal identification. The most important factor precluding recommendations remains difficult standardisation of tests (Box 6.1). After addressing these, and development of accurate tests, the next required step is FDA approval or CE marking before tests can be clinically validated and recommended as standard-of-care.

Despite these hindrances to the widespread adaptation of fungal molecular diagnostics, several commercial tests are available and have been demonstrated to be useful in diagnosis of fungal infections.

Box 6.1: Challenges in development of accurate fungal molecular diagnostics tools

- Methods for fungal molecular diagnosis are not standardised
- Extraction methods differ
- Primers used differ
- Cut-offs used differ for quantitative real time PCR
- Results vary depending on optimal time of sampling
- Patients on treatment continue to show positive results; cannot be used for prognosis
- Potential for false positive results
- Fungi are common environmental contaminants
- Colonisation versus infection, needs quantitative cut-offs
- Co-colonisation and co-infection with other fungi may be common confounders

<table>
<thead>
<tr>
<th>Fungal infection</th>
<th>Test</th>
<th>Current status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasive Aspergillosis</td>
<td>Aspergillus real-time PCR</td>
<td>Not FDA approved but based on recommendations by European Aspergillus PCR Initiative (EAPCRI) and Aspergillus Technology Consortium, tests in clinical trials</td>
<td>• In bronchial specimens, sensitivity ~80% (comparable to galactomannan) while specificity >90% • Combined use with galactomannan and β-D-Glucan detection increases sensitivity</td>
</tr>
<tr>
<td>Invasive Candidiasis</td>
<td>Candida real-time PCR (ITS1 for Candida spp.)</td>
<td>Not FDA approved</td>
<td>• In plasma and serum samples, sensitivity >90%</td>
</tr>
<tr>
<td></td>
<td>Yeast Traffic Light (PNA-FISH)</td>
<td>FDA approved</td>
<td>• Used for blood culture bottle positive for yeasts • Can also differentiate between fluconazole resistant and susceptible species</td>
</tr>
<tr>
<td>Mucormycosis</td>
<td>Real-time PCR</td>
<td>Early development, several different studies but no single standardised test</td>
<td>• Used on blood, serum and bronchial specimens</td>
</tr>
<tr>
<td>Cryptococcosis</td>
<td>As part of multiplex platforms in CSF samples</td>
<td>In process for FDA approval</td>
<td>• Sensitivity not greater than antigen detection • Advantage is that test can be run on a smaller volume and multiplexed with other pathogens</td>
</tr>
<tr>
<td>Pneumocytosis</td>
<td>MyoAssay Pneumocystis, real-time PCR</td>
<td>CE marking 2010</td>
<td>• 22% increase in sensitivity as compared to the Calcofluor white stain method used on bronchial lavage specimens • False positive rates may be high (46% in some studies with colonised patients)</td>
</tr>
</tbody>
</table>
QUALITY ASSURANCE
Quality Assurance

Imran Ahmed and Seema Irfan

Quality assurance aims to improve the accuracy, reliability, timeliness and reproducibility of information generated in a microbiology laboratory. Ultimately, it facilitates proper patient management, good laboratory practice, external accreditation and staff motivation. Consultants and senior technologists are responsible for quality management, and under their leadership, all staff should actively participate in QC programmes.

Quality assurance comprises of internal and external measures:

- Internal quality assurance
 - Monitors all phases of testing, including pre-analytical, analytical and post-analytical.
 - Accomplished by assessing the quality of specimens, monitoring the performance of test procedures, reagents, media, instruments and personnel by reviewing test results and documenting the validity of the test methods.
 - Identifies internal errors and helps in re-organisation of processes to ensure accuracy and reliability of results.

- External quality assessment
 - Compares a laboratory’s testing performance to a source outside, such as a peer group of laboratories or a national reference laboratory.
 - Accomplished by proficiency testing, inter-laboratory re-checking or re-testing of slides, and on-site evaluation.
 - Identifies hidden errors in testing and ensures reproducibility of results.

<table>
<thead>
<tr>
<th>Internal Quality Assurance</th>
<th>Performs inside the lab</th>
<th>Assesses accuracy and reliability of results</th>
<th>Identifies internal errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Quality Assessment</td>
<td>Performs inside and outside the lab</td>
<td>Assesses reproducibility of results</td>
<td>Identifies hidden errors</td>
</tr>
</tbody>
</table>

Box 7.1: Internal Quality Assurance versus External Quality Assessment

Internal Quality Assurance

The basis is improving quality at each step in the laboratory workflow. Managers must invest time and resources to develop and implement standard operating procedures, hire competent staff, standardise tests, stock supplies and develop a record-keeping system.

Figure 7.1: Overview of internal quality assurance

Standard Operating Procedures (SOPs)

- Maintain an SOPs binder in the laboratory that is accessible at all times to staff working on the premises.
- Develop and implement SOPs for every procedure performed in the laboratory using current guidelines and literature published in reputable journals and books.
- To ensure that SOPs reflect current scientific knowledge and trends, a consultant and technical supervisor must review, revise, date and initial documents at least once a year.

Human Resource

- Based on the volume and complexity of work, a sufficient number of qualified supervisory and technical personnel must staff the laboratory.
- Document competencies of staff working in the laboratory at least twice a year.
- Offer lab personnel access to continuing education programmes periodically.
- Maintain personnel file for documentation related to staff.

Specimen Collection and Transportation

- Ideally, collect specimens with sufficient coordination between laboratory staff and clinicians.
- Use a standardised specimen collection form to obtain relevant patient information from clinicians. Data collected should include at least the following:
 - Name (first and last)
 - Unique identifier (such as medical record number or government-issued identification card)
 - Age and sex
 - Clinical history
 - Site of specimen collection
 - Time of specimen collection
 - Information of other specimens submitted to laboratory
 - Patient contact details
- Develop SOPs for each specimen collected and test run, and include at least the following information:
 - Transport medium
 - Transport time
 - Holding temperature during transport
 - Availability and frequency of test in the laboratory (daily, bi-weekly, fortnightly, monthly)
 - Reporting schedule (daily, bi-weekly, fortnightly, monthly)

Media, Reagents, Stains and Biochemical Reactions

- Apply labels on all containers clearly identifying the following:
 - Name of culture media, solution or reagents
 - Batch number
 - Date of preparation
 - Date of first in use
 - Expiry date
- Check performance of media and reagents against QC strains (see Table 7.1).
 - Maintain an inventory of mother stocks of QC organisms frozen at -70°C in potato dextrose slants for an indefinite period of time.
 - Maintain a set of QC strains at room temperature and sub-culture every 3 months.
 - Draw fresh isolates from the mother stock frozen at -70°C once a year.
 - Media should only be made available once sterility checks have been performed. Contaminated lots of media and solutions should be discarded. Results of sterility check should be kept in the section.
 - Check performance of all stains using positive and negative control slides. Record, initial and date results on an appropriate form.
 - Perform biochemical tests according to instructions outlined in the procedure manuals.
 - Only report results for identification of organisms when the controls show expected result.
 - Immediately report unsatisfactory results to the laboratory supervisor.
 - Check all commercially prepared media, plates and tubes for cracks, clarity, excessive bubbles, hemolysis, unequal surface and filling, and visible contamination.
To determine sterility of media prepared in-house, follow these steps:
 - At random, select 5% of plates prepared in each lot of media to be tested.
 - Incubate each half of the plates selected at 25°C and 35°C for 3 days.
 - Inspect those plates daily for contamination.
 - If 5% or less of the total plates are contaminated, the lot is acceptable for use.
 - If more than 5% of the total plates are contaminated, the lot is resampled.
 - If the resampled plates show greater than 5% contamination, the entire lot is assumed to be contaminated and should be discarded.

Reporting Results
 - All laboratory reports must be reviewed and countersigned by the supervisor.
 - Prior to finalising results ensure the following:
 - No steps in testing were missed.
 - No clerical errors were made while collecting specimen or running the test.
 - Correct conclusions have been drawn.
 - Review comments.
 - Patient confidentiality was maintained.
 - Clinicians are informed of panic results.
 - Patient records will be maintained for at least 2 years.

Archives and Recordkeeping
 - Laboratory Staff are responsible for recording QC data on the appropriate forms.
 - Supervisors (medical and technical) are responsible for monthly periodic review of the QC data.
 - All QC records are required to be retained for a period of at least 2 years, including QC audits and QC indicators corrective action record.
 - Weekly reviews by laboratory personnel (consultant and technical supervisor).
 - Monthly reviews by laboratory head

Safety in Mycology Laboratory
 (see Chapter 8)

External Quality Assessment

External quality assessment is an important indicator of laboratory performance. During EQA, laboratory procedures, reagents, media, equipment and personnel are all checked. Depending on availability of time and resources, EQA can be performed using the following methods:
 - External proficiency testing
 - Unknown proficiency samples are sent to the laboratory for testing. Specimens should be processed within 1 day of arrival. In order to keep impartiality with the specimens submitted for proficiency, all specimens are to be treated as patient’s specimens.
 - Final reports have to be reviewed and signed by the supervisor and director.
 - A lab must maintain an average score of 80% to maintain licensure in that subspecialty area.
 - Rechecking or retesting
 - Previously read slides and tests are re-read and re-analysed by a reference laboratory.
 - On-site evaluation
 - Done when external proficiency and rechecking/retesting methods are difficult.

<table>
<thead>
<tr>
<th>Table 7.1: ATCC strains for quality control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Sabouraud’s dextrose agar</td>
</tr>
<tr>
<td>Potato dextrose agar</td>
</tr>
<tr>
<td>BiGGY agar</td>
</tr>
<tr>
<td>Malt extract agar</td>
</tr>
<tr>
<td>Aspergillus flavus and A. parasiticus agar</td>
</tr>
<tr>
<td>Cornmeal Tween-80</td>
</tr>
<tr>
<td>Urease agar</td>
</tr>
<tr>
<td>Germ tube test</td>
</tr>
<tr>
<td>Mycosel agar (cycloheximide tolerance)</td>
</tr>
<tr>
<td>Dermatophyte test medium</td>
</tr>
<tr>
<td>Casein</td>
</tr>
<tr>
<td>Tyrosine</td>
</tr>
<tr>
<td>Xanthine</td>
</tr>
<tr>
<td>India ink</td>
</tr>
<tr>
<td>Hair perforation test</td>
</tr>
<tr>
<td>Test</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Lactophenol cotton blue</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Calcofluor white stain</td>
</tr>
<tr>
<td>10% KOH solution</td>
</tr>
<tr>
<td>Brain heart infusion (BHI) agar with 10% sheep blood slant</td>
</tr>
<tr>
<td>API 20C AUX</td>
</tr>
</tbody>
</table>

SAFETY IN THE MYCOLOGY LABORATORY
Safety in the Mycology Laboratory

Erum Khan

Safety in the mycology laboratory is crucial because of the potentially pathogenic fungi being studied as well as the hazardous nature of reagents, flames, glassware and procedures. For safety and protection, senior supervisory staff should develop biosafety guidelines and ensure that all workers are well-versed with them. Ideally, biosafety guidelines should be science-based, made available broadly and be updated based on real-time feedback. Individual labs should further tailor these recommendations based on their own experiences.

Box 8.1: Definitions

- **Biorisk** is any harm where the source is a biological material
- **Biorisk assessment** is an analysis of the severity and frequency of exposure to this harm
- **Biorisk management** is the identification of biorisks, and steps towards its control and mitigation

Box 8.2: Five steps of risk assessment

- Identify potential hazards
- Decide who is at risk
- Assess likelihood of harm
- Implement adequate precautions
- Manage risks and hazardous situations

Pre-Analytical Phase Hazards

Risk Factors

- Patients with any active, latent, chronic or undiagnosed infections can be a source of disease, and sample collection, handling and transport should always be performed carefully.

Best Practices

- Only trained staff (phlebotomist, nurse or medical doctor) should collect samples – e.g. drawing blood, fine needle aspiration and punch biopsy – to avoid needledstick and prick injuries.
- Always perform skin scrapings and nail drilling in an isolated room or area of lab to avoid creating contaminated aerosols.
- Staff should wear personal protective equipment (PPE), such as mask, gloves and gown, as appropriate.

Analytical Phase Hazards

Risk Factors

- The most common laboratory-acquired fungal infections are those caused by dimorphic fungi *Blastomyces*, *Histoplasma* and *Coccidioides*. Most (LAIs) are secondary to inhalation of conidia.
- Ideally all specimens must be processed in a BSC observing safe practices.
- If a BSC is not available, specimen processing should be performed in an area of the laboratory with minimum traffic to avoid aerosol generation.
- Staff processing specimens must wear proper PPE and must be competent to handle the specimen according to good laboratory practices.

Box 8.3: Common modes of lab-acquired infections

- Parenteral inoculations with syringes and sharps
- Splashes onto skin and mucus membranes
- Inhalation of aerosols
- Ingestion due to mouth pipetting or eating in laboratory
- Animal bites or scratches during animal studies

Best Practices

Highly Pathogenic Fungi

- Highly-pathogenic fungi include *H. capsulatum*, *B. dermatitidis*, *Coccidioides immitis*, *C. posadaski*, *Paracoccidioides brasiliensis*, *P. marneffei* and *C. bantiana*, and must always be handled in a BSL-3 facility.
- Avoid slide cultures and wet preparation of isolates that are suggestive of one of the above-listed pathogens.
- Such pathogens can either be sent to reference labs or identified using molecular techniques to avoid exposure.

Material Safety Data Sheet

- MSDS is an essential document that contains information about the chemical nature and safe handling i.e. storage and disposal guidelines of products in the laboratory.
- These documents are prepared by the manufacturers of the material and provide end-user information for possible hazardous outcomes in case of accidents or over exposure.
- As part of good laboratory practice, every chemical/hazardous material placed in the laboratory must be accompanied with an MSDS sheet.
- Chemicals must be handled, saved and discarded as mentioned in these sheets. Data sets must be reviewed before chemical/hazardous material is used in the lab.
- Always look at the MSDS, match the chemical on the container with the MSDS, be aware of the hazards, safe handling and storage of the chemical, as well as what to do in an emergency involving it.

Culture

- A complete risk assessment is recommended for an individual laboratory.
- Handle all cultures, especially molds (flamemous, fuzzy or cottony), in a Class II BSC placed in a separate room or a designated space in an open microbiology laboratory.
- Petri plates (particularly those growing mold) must be sealed with porous tape to prevent accidental opening and spread of spores.
- Cultures with yeast can be read on the open bench in a BSL-2 laboratory. However, if the isolate is suspected to be a dimorphic fungus (slow growing white or black molds) it must be shifted to Class IIA2 BSC for further manipulation or processing.
- Never sniff a fungal culture to determine its odor. Even on a bacteriology work-station, plates containing molds should not be uncovered on the open bench.
- Storage and transportation of filamentous molds to another laboratory must be done in slants with screw-cap tubes. Use of petri dishes is not recommended.
- *Coccidioides* spp. is the only fungi that is classified as a select agent. However, there are other highly-pathogenic fungi that require special handling.

Reagents and Media

- Potential risks and mitigations steps in mycology laboratory include but not limited to below mentioned reagents and activities.
- **Potassium hydroxide**
 - KOH 10%-15% solution is corrosive and may cause burns or irritation to skin, eyes, and respiratory tract.
 - Avoid contact with eyes and skin, inhalation and ingestion.
 - Use of gloves and eye protection is recommended if there is a possibility of splashing or aerosol generation.
- **Calcofluor white stain**
 - It is not hazardous and hence no special safety measures are required.
 - Good hand hygiene using soap and water at the end of chemical handling is recommended.
- **In case of accidental eye contact, rinse eye well with water.**
- If KOH is used with Calcofluor white stain, more stringent precautions must be taken. Always refer to MSDS for guidance.
Lactophenol cotton blue (Poirier’s blue)
- It is the most commonly used stain in the mycology laboratory.
- Chemically, LPCB is acidic and therefore avoid contact with skin, eyes and clothing.
- The product is considered hazardous in larger amounts, i.e., toxic by inhalation and contact with the skin, and especially if swallowed.
- Handle large amounts of LPCB in a well-ventilated area.
- India ink
- It is not a regulated hazardous waste in quantities used in clinical lab therefore no special personal protection is required under normal use conditions.
- However, since yeast cells can remain viable, good hand hygiene and gloves are recommended when handling India ink wet mounts.
- Gomori methenamine silver nitrate stain
- Ingredients are toxic and corrosive therefore avoid contact with skin and eyes.
- Large amounts must be handled with adequate ventilation system.
- Giemsa stain
- Giemsa stain is toxic by inhalation, absorption and ingestion due to its methanol content.

Laboratory Design
- Laboratory design is fundamental to laboratory safety. Although there is no national standard requirement for area per person working in the laboratory, ideally, a minimum 5-foot space between the worker and any object behind her/him should provide enough room for movement between benches.
- The mycology section should be separated from the rest of the laboratory by closable doors.
- Although not imperative, airflow should be preferably directed inward from the main laboratory into the mycology lab.
- The section must also have a sink for hand washing. Bench-tops must be constructed of impervious materials.
- Mycology section must have restricted access, limited to staff only.

Biosafety Level 3 Laboratory
- Since most common laboratory-acquired fungal infections are caused by inhalation of conidia of dimorphic fungi Blastomyces, Histoplasma, and Coccioides, BSL-3 is preferred.
- However, if BSL-3 facility is not available, use of BSC and respiratory precautions may be used with good laboratory practices.

Biosafety Cabinet
- Class II-A1 or II-A2 BSC is recommended for the diagnostic laboratory.
- It is recommended that BSC should be installed in the laboratory away from walking paths and doors.
- The BSC filter can get damaged at the glue joint or at the gasket if moved, resulting in dangerous leaks. Thus filter and cabinet integrity must be tested whenever the equipment is shifted.
- BSCs must be certified by trained professionals in accordance with ANSI/NSF Standard at time of installation and at least annually thereafter. In addition, recertification is recommended each time the unit is moved.

Post-Analytical Phase Hazards

Risk Factors
- Generation of biohazard waste.

Best Practices

Disinfection
- All live cultures and waste generated must be autoclaved before discarding.
- If autoclaving is unavailable then fugal culture can be decontaminated by soaking the plates and tubes overnight in a fresh 1:10 bleach solution. The plates and opened tubes must be completely immersed overnight before discarding.
- Ethyl alcohol (70%) has been reported as the most effective concentration for killing the tissue phase of B. dermatitidis, C. immitis, and H. capsulatum.
- Chlorine-based disinfectants such as hypochlorite and house hold bleach (>0.5%) can also be used but these are corrosive and must be wiped effectively from metallic surface.

Waste Management
- Laboratory must have a waste management plan that identifies and categorises waste as infectious and non-infectious at the site of waste generation.
- Strategies must be in place to differentiate between categories of waste such as use of colour-coded waste bags.
- All infectious waste must be either autoclaved or disinfected before it leaves the laboratory.
- At BSL-2 labs all culture and stocks must be autoclaved before discarding.
- For BSL-2 pathogens, cultures must be either disinfected or sealed in leak-proof containers to be incinerated, either on-site or at distant location, such as local government contractual agreements.

Table 8.1: Common hazardous activities specific to mycology laboratory that can put workers at risk

<table>
<thead>
<tr>
<th>Activity</th>
<th>Potential hazard/route of transmission</th>
<th>Engineering control</th>
<th>Administrative control/work practice</th>
<th>PPE</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory samples</td>
<td>Aerosol generation, inhalation</td>
<td>BSL-2 laboratory, use of BSC</td>
<td>Work inside BSC with splash shield</td>
<td>Gloves, mask and laboratory coat</td>
<td>Risk of fungal, MTB and viral infections</td>
</tr>
<tr>
<td>Skin/tissue biopsies</td>
<td>Sharp injury, percutaneous inoculation</td>
<td>Use of protected sharps; puncture resistant sharp container</td>
<td>Work inside BSC with splash shield; immediate discard in punctured resistant bin</td>
<td>Gloves, mask and laboratory coat</td>
<td>Do not over fill sharp discard container</td>
</tr>
<tr>
<td>Sub-culture from blood culture bottle</td>
<td>Sharp injury, percutaneous inoculation</td>
<td>Use safe sharps; such as retractable needles; puncture resistant sharp container</td>
<td>No recapping; immediate disposal of sharp in bin</td>
<td>Gloves, mask and laboratory coat</td>
<td>No recapping; immediate disposal of sharp in bin</td>
</tr>
<tr>
<td>Centrifuge</td>
<td>Aerosol generation, inhalation</td>
<td>Use BSC, removable safety rotors, safety cups and plastic tubes</td>
<td>Load and unload rotors in BSC, and open lid when completely stopped; no glass tubes</td>
<td>Gloves, mask and laboratory coat</td>
<td>Checks lids for wear and tear</td>
</tr>
<tr>
<td>Smear/stain</td>
<td>Aerosol slide warming, inhalation</td>
<td>Use slide warmer</td>
<td>Do not heat smear directly on flame</td>
<td>Gloves and laboratory coat</td>
<td>Some stains are toxic and corrosive see above; avoid contact with skin and eyes</td>
</tr>
<tr>
<td>Fungal wet mounts (KOH- Calcofluor)</td>
<td>Toxic inhalation and direct skin, mucus contact</td>
<td>Use well-ventilated room</td>
<td>For storage of large volumes use fumes hood or properly ventilated room</td>
<td>Laboratory coat, glove, and mask when dealing with large volumes</td>
<td>These are toxic and corrosive avoid contact with skin and eyes</td>
</tr>
<tr>
<td>Reading fungal culture plates</td>
<td>Aerosol generation, inhalation, direct inoculation</td>
<td>Use BSC for all molds; yeast can be processed on bench</td>
<td>Secure petri dish lid with adhesive tape</td>
<td>Laboratory coat, gloves and mask if handling mold outside BSC</td>
<td>Do not sniff fungal cultures at any point, do not open plate with mold on open bench</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aleuriospore</td>
<td>A fungal spore formed at the end of a hypha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anamorph</td>
<td>An asexual (imperfect) stage of fungus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrospore</td>
<td>A spore formed from fragmentation of a hypha into individual cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascomarp</td>
<td>A large fruiting body harboring asci, e.g. in Chaetomium spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascus</td>
<td>A sac-like structure often formed in a fruiting body and usually contains 2-8 ascospores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascospore</td>
<td>Sexual spore produced in an ascus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aseptate</td>
<td>A hypha without cross-walls or septa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asynchronous</td>
<td>Pertaining to conidiation; conidia are produced in succession from the same single fertile point; the conidia may form short chains or gather in loose clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blastic</td>
<td>Describes the spores formed by the enlargement of the spore-producing cell before the septum is produced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blastoconidium</td>
<td>A conidium formed by budding along a hypha, pseudohyphae or single cell as in yeasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlamydospore</td>
<td>A resting spore formed from the enlargement of an existing cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleistothecia</td>
<td>Closed fruiting body containing asci</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conidiogenesis</td>
<td>Process leading to the production of conidia (spores)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conidiophore</td>
<td>A specialised cell or hypha on which spores are formed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conidium</td>
<td>An asexual spore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coremia</td>
<td>Compact cluster of erect conidiophores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysgonic</td>
<td>Slow growing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enteroblastic</td>
<td>The formation of spores in succession from a spore-producing cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floccose</td>
<td>Covered with woolly tufts or soft hair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hilum</td>
<td>Attachment scar, formed where the conidium was attached to the conidiophore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holoblastic</td>
<td>Production of a conidium with all layers of the mother cell wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hülle cells</td>
<td>Large thick-walled multinucleated cells formed by some Aspergillus species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypha</td>
<td>An individual filament that makes up the vegetative growth of a fungus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroconidia</td>
<td>A large conidium (asexual spore) produced by fungi usually multicellular</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metula</td>
<td>Cell or short branch on vesicle bearing phialides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microconidia</td>
<td>A small conidium (asexual spore) produced by fungi usually multicellular</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mold</td>
<td>A filamentous fungus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Term | Definition
--- | ---
Mycelium | A mass of hyphae (branching filaments) that make up the vegetative growth of a fungus
Ostiole | A mouth or opening
Perithecium | Large round or pear-shaped structure containing asc and ascospores that are released through an ostiole
Phialides | Cell with terminal opening through which enteroblastic conidia are produced repetitively
Pseudohypha | Chain of yeast cells that have been produced by budding and have remained attached to one another forming a hypha-like filament
Pseudeomyceum | A mass of pseudohyphae
Pycnidium | Large oval, round or flask-shaped fruiting body containing conidia; usually has an ostiole
Reflexive | A hyphal branch that grows inwards towards the centre of the colony
Rhizoid | A root-like branching hypha
Septate | Having cross walls or septa
Septa | A cross wall in a fungal hypha or spore
Sporangiophore | Specialised hyphal branch or stalk bearing a sporangium
Sporangium | Closed sac-like structure in which asexual spores (sporangiospores) are formed by cleavage
Stipe | Conidiophore bearing vesicle in Aspergillus
Sympodial | Pertaining to the growth of a conidiophore; the conidia arising from the same conidiophore are seen in various stages of development. These conidiophores are typically germinative in appearance
Synchronous | Pertaining to conidiation; conidia are formed simultaneously, each arising from a separate fertile point; these points are often very close together, producing clusters of conidia (conidia in a cluster are in the same stage of development)
Synnemata | Compact cluster of erect conidiophores
Teleomorph | The sexual (perfect stage) of a fungus
Thallic | Spores produced from an existing hypha
Yeast | Unicellular budding organism
Zygospore | A thick walled sexual spore produced by zygomycetes

References and Resources

Chapter 1 | Sample Collection and Transport

Chapter 2 | Media and Tests

Chapter 4 | Antifungal Susceptibility Testing
Practical Guide and Atlas for the Diagnosis of Fungal Infections

M
- Madurella grisea, 82
- Madurella mycetomatis, 82
- Malassaea furfur, 45, 58
- Malassezia species, 40
- M. audouinii, 55
- M. canis, 55, 58
- M. equinum, 55
- M. fulvum, 55
- M. gypseum, 55, 59
- Microsporum spp., 16, 55, 58, 59
- Microsporum canis, 58
- Molecular methods, 15, 93, 94, 95, 113
- Mucocutaneous candidiasis, 23, 24
- Mucorales, 12, 50, 52, 54
- Mucormycosis, 43, 50, 51
- Mucor spp., 53, 91
- Myceloma, 64, 66, 71, 72

N
- Nocardia spp., 6, 17, 22, 71, 101

O
- Onychomycosis, 32, 48, 62, 69, 73, 80
- Otitis externa, 23

P
- Paecilomyces lilacinum, 67
- Paecilomyces variotii, 67
- PAF, 11, 6, 7
- Partial acid fast, 11
- Phaeohyphomycosis, 79
- Phaeohyphomycoses, 69, 70
- Phoma spp., 81
- Pigmented hyphae, 63, 71, 81
- Pityriasis versicolor, 58
- Pseudohyphae, 12, 13, 17, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 39, 41, 108, 109
- Pulmonary aspergillosis, 41
- Purpureocillium lilacinum, 67

Q
- Quality control, 10, 12, 13, 14, 15, 16, 87, 101

R
- Rhinocerebral mucormycosis, 43, 50
- Rhinosporidium spp., 78, 79
- Rhinosporidium maxilaris, 79
- Rhizopus spp., 53, 91
- Rhodotorula spp., 40

S
- Sakazakia vasiformis, 53
- S. apiospermum, 63, 66
- Saprophytic, 10, 15, 16, 17, 74
- S. boydii, 66
- Scedosporium spp., 63, 66
- Scedosporium apiospermum, 63, 66
- Sclerotic bodies, 69, 70
- Scopulariopsis spp., 69
- Scotch tape, 4, 8, 16
- Septate media, 7, 15
- Septate, 44, 45, 46, 48, 64, 65, 66, 72, 77, 80, 109
- Specimen collection, 14, 1, 2, 3, 5, 7, 99
- Sporothrix schenckii, 76
- S. prolificans, 66
- Spudalos, 6
- Syncephalastrum spp., 54

T
- Tape preparation, 16
- Tease mount preparation, 14, 16
- Tinea, 5, 24, 40, 58, 61, 62, 82
- Tinea concentricum, 57
- Tinea corporis, 55, 56, 57
- Tinea faciei, 57
- Tinea pedis, 24, 61, 62
- Tinea unguium, 55
- T. mentagrophytes, 8, 15, 16, 18, 55, 61, 101
- Tracheobronchitis, 43
- Transport, 14, 1, 2, 3, 5, 7, 99, 113
- Transportation, 2, 4, 105
- Triazoles, 26
- Trichophyton mentagrophytes, 61
- Trichophyton spp., 14, 16, 55, 60, 61, 62
- Trichophyton rubrum, 60
- Trichosporon spp., 39, 90
- T. rubrum, 18, 55, 60, 101
- T. tonsurans, 55, 61, 62
- T. verrucosum, 55
- T. violaceum, 55, 62

U
- Unicellular, 109
- Ustilago (Pseudomyxa) spp., 41

V
- Voriconazole, 84

W
- Wide-angled branches, 22
- Workers, 75, 104, 107

Y
- Yeasts, 14, 12, 13, 16, 17, 22, 23, 25, 31, 33, 35, 36, 38, 84, 90, 95, 108, 113
Practical Guide and Atlas for the Diagnosis of Fungal Infections

Contributors
Afia Zafar
Kauser Jabeen
Joveria Farooqi
Saadia Tabassum
Zafar Sajjad
Seema Irfan
Mohammad Zeeshan
Erum Khan
Sadia Shakoor
Imran Ahmed