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REVIEW ARTICLE
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Abstract

Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders characterized by abnormal

cellular differentiation and maturation with variable progression to acute leukemia. Over the last decade,

scientific discoveries have unraveled specific pathways involved in the complex pathophysiology of MDS.

Prominent examples include aberrations in cytokines and their signaling pathways (such as tumor necrosis

factor-alpha, interferon-gamma, SMAD proteins), mutations in genes encoding the RNA splicing machinery

(SF3B1, SRSF2, ZRSR2, and U2AF1 genes), mutations in genes disrupting the epigenetic machinery

(TET2, DNMT3A, DNMT3B, EZH2, ASXL1). In addition, abnormalities in regulatory T-cell dynamics and

atypical interactions between the bone marrow microenvironment, stroma and progenitor cells, and

abnormal maintenance of telomeres are also notable contributors to the complex pathogenesis of MDS.

These pathways represent potential targets for novel therapies. Specific therapies include drugs targeting

aberrant DNA methylation and chromatin remodeling, modulating/activating the immune system to

enhance tumor-specific cellular immune responses and reduce anomalous cytokine signaling, and blocking

abnormal interaction between hematopoietic progenitors and stromal cells.
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Introduction

Myelodysplastic syndromes (MDS) are clonal, heteroge-
neous, hematopoietic stem cell disorders characterized by
ineffective hematopoiesis, peripheral blood cytopenias, dys-
plasia in one or more myeloid cell lines, and an inherent risk
of transformation to acute myeloid leukemia (AML). De
novo MDS is usually a disorder of the elderly, commonly
presenting in the 7th decade of life (1). Several molecular
pathways have been implicated in the pathogenesis of MDS,
with somatic mutations evident in over 80% of patients (2).
Besides acquired somatic mutations, cytokine aberrations,
immune dysregulation, alterations in the bone marrow
microenvironment, abnormal RNA splicing, changes in

telomeres and epigenetic dysregulation also play an integral
role in the pathogenesis.

Cytokine aberrations

Transforming growth factor-beta (TGF-b) signaling
and the SMAD proteins

Aberrations in the production and signaling of cytokines,
such as tumor necrosis factor-alpha (TNF-a), TGF-b, inter-
feron-gamma (IFN-c), and interleukins (IL) have been
described in MDS. TGF-b exhibits myelosuppressive proper-
ties and stimulates autocrine production of other myelosup-
pressive cytokines (such as IL-6 and TNF-a). Ineffective
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hematopoiesis in MDS arises as a result of increased apop-
totic susceptibility and diminished sensitivity of bone mar-
row stem cells to growth factors (3, 4). These effects are
believed to be the result of the excess production of inflam-
matory cytokines and T-cell dysregulation along with abnor-
mal signaling, a finding most pronounced in lower-risk
patients with MDS (5, 6). TGF-b signal transduction is car-
ried out by phosphorylation of SMAD proteins (principally
SMAD2 and SMAD3), a class of intracellular proteins that
regulate gene expression and cellular events. SMAD2 has
been reported to be over-expressed in MDS progenitor cells.
In a report by Zhou et al. (7) in 2008, immunohistochemical
staining of progenitor cells from patients with MDS showed
an increased expression of activated/phosphorylated SMAD2
protein, with increased number of staining cells and
increased intensity of nuclear staining, in comparison with
progenitor cells from non-MDS controls. Not only this, but
gene expression profiling revealed a significant upregulation
of the SMAD2 gene in MDS progenitors, a finding most
likely arising as a result of sustained TGF-b signaling. As
TGF-b ligand interaction with its receptor and the coupled
TGF-b receptor 1 kinase (TBR1-kinase) is responsible for
the activation/phosphorylation of SMAD2 for signal trans-
duction, manipulation of this interaction represents a poten-
tial therapeutic option for patients with MDS (4). Zhou
et al. (7) delivered short hairpin RNA (shRNA), an artificial
RNA molecule used for silencing gene expression, targeting
TBR1-kinase to MDS progenitors via lentiviral vectors.
Expression of shRNA resulted in down-regulation of TBR1-
kinase, leading to functional inhibition of the TBR1-kinase-
SMAD2 signal transduction pathway. MDS progenitor cells
expressing the anti-TBR1-shRNA showed resistance to
TGF-b-mediated anti-proliferative signals and formed larger
colonies of erythroid and myeloid cell lineages in vitro.
SMAD7, another SMAD protein, interacts with activated

TBR1 and blocks association and activation/phosphorylation
of SMAD2, thereby inhibiting TGF-b signaling. In another
study published by Zhou et al. (8) in 2011, gene expression
profiling showed markedly reduced SMAD7 in progenitor
cells isolated from MDS patients in comparison with non-
MDS controls, indicating SMAD7 downregulation to be
another mechanism of hematopoietic suppression via
unchecked TBR1-kinase-SMAD2 signal transduction. Chro-
mosomal deletions involving the SMAD7 gene, located on
the q-arm of chromosome 18, may be responsible for its
downregulation. In fact, -18/del(18q) were reported to be
commonly observed chromosomal abnormalities (up to 8%)
in multiple studies involving patients with MDS (9–11). As
discussed later in this review, abnormal DNA methylation
and epigenetic silencing are dominant pathological alter-
ations in MDS and it is likely that the SMAD7 gene may be
affected by this process in a subset of patients (12).
In the aforementioned studies, the effects of novel TBR1-

kinase inhibitors SD-208 and LY2157299 (galunisertib) on

MDS progenitors were also studied in vitro. Progenitors
from patients with low-risk MDS treated with various
cytokines in the presence of SD-208 showed a significant
increase in erythroid and myeloid colony numbers, highlight-
ing the therapeutic potential of TBR1-kinase inhibition,
especially in patients with low-risk MDS (7). The same find-
ings were evident in similar in vitro experiments using
galunisertib (8). These results indicate that inhibition of
TBR1-kinase abrogates the myelosuppressive effects of
sustained TGF-b signaling and SMAD2 activation by mim-
icking the effects of SMAD7. A recent study by Rod�on
et al. (13) showed galunisertib to be well-tolerated and
effective in patients with malignant gliomas. Studies involv-
ing patients with MDS are warranted to determine whether
the in vitro effects of TBR1-kinase inhibition on MDS
progenitors are reproducible in vivo.
Additionally, other agents targeting the TGF-b/SMAD

pathway are currently being developed. ACE-001 (sotater-
cept) is a chimeric fusion protein that acts as an activin-
receptor type 2 ligand trap, antagonizing activin, and other
TGF-b ligands (14). ACE-536 (luspatercept) is another
fusion protein that is also an activin-receptor type 2 ligand
trap that preferentially targets growth differentiation factor
(GDF)-11 and GDF-8 (15). Both agents interfere with
downstream signaling cascades of their respective targets,
having pronounced inhibitory effects, especially on the
SMAD pathway (14). Sotatercept and luspatercept promote
late stage, erythropoietin-independent erythropoiesis and
red cell maturation, thereby alleviating red cell transfusion
dependence in low- and intermediate-risk MDS. Prelimi-
nary results from a clinical trial investigating luspatercept
(ClinicalTrials.gov: NCT01749514) demonstrated significant
efficacy in reducing red cell transfusion requirements in
low- and intermediate-risk patients with MDS (16). Similar
results were also reported for sotatercept (ClinicalTrials.-
gov: NCT01736683).

TNF-a, IFN-c, and B7-H1

As MDS progress, the progenitor cells become less suscepti-
ble to apoptosis and become phenotypically more immature
in comparison with non-clonal bone marrow progenitor cells.
B7-H1, an immune-inhibitory molecule induced by the pro-
longed presence of cytokines such as TNF-a and IFN-c, has
been implicated in this. B7-H1+ MDS progenitors are shown
to have greater proliferative capacity in comparison with
those that do not express B7-H1. Furthermore, B7-H1 sup-
presses T-cell expansion and blocks T-cell-mediated apopto-
sis of MDS blasts, a process noted to keep the proliferation
of the dysplastic clone in check early within the disease pro-
cess. Blasts from patients with high-risk MDS are also noted
to have increased expression of B7-H1 than those from low-
risk MDS (17). Nuclear factor-jB (NF-jB) transduces the
signal from TNF-a and IFN-c, leading to the production and
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expression of B7-H1 in MDS blasts. The NF-jB inhibitor
pyrrolidine dithiocarbamate has been shown to block this
signal transduction in vitro (17). Extensive in vitro and
in vivo studies may lead to development of pyrrolidine
dithiocarbamate as a targeted therapy for patients expressing
high levels of B7-H1, particularly those with high-risk dis-
ease and impending evolution toward AML.

Immune dysregulation

There is evidence for immune dysregulation and abnormal
dynamics between T-cell subtypes and their responses in
MDS. Regulatory T cells (CD4+, CD25+, FOXP3+) modulate
immunity by preventing over-exuberant immune activation
that may lead to autoimmunity. However, these cells also exhi-
bit detrimental effects on immune surveillance and anti-tumor
responses (18). A number of studies have shown polyclonal
expansion of CD4+ T cells with oligoclonal/monoclonal
expansion of CD8+ T cells and markedly decreased numbers
of regulatory T cells (CD4+, CD25+, FOXP3+) in low-risk
patients with MDS, leading to autoimmune cytotoxicity
against progenitor cells, myelosuppression, and ineffective
hematopoiesis (3). Conversely, the number of regulatory T
cells in late stage and high-risk MDS is markedly increased,
compromising the anti-tumor mechanisms of the immune sys-
tem and leading to immune escape and unchecked expansion
of the abnormal progenitor clone and eventual progression to
AML (18). Based on these observations, the role of immuno-
suppressive therapy (usually with anti-thymocyte globulin
and/or cyclosporine) and immunomodulatory agents (such as
thalidomide and lenalidomide) has been defined in the treat-
ment of patients, particularly showing efficacy in those with
low-risk and early-stage MDS (3, 19). Specific characteristics,
such as elevated serum thrombopoietin levels (20), positivity
for HLA-DR15 (21), presence of MDS progenitors deficient in
glycosyl-phosphatidylinositol-anchored proteins (22), and loss
of the HLA-A allele due to uniparental disomy of the q-arm of
chromosome 6 (23) potentially predict a positive response to
immunosuppressive therapy in a subset of patients.
Activation of T lymphocytes results in the expression of

the immune-inhibitory molecule CTLA-4 on the cell surface.
CTLA-4 demonstrates greater avidity for B7 than the stimu-
latory molecule CD28, thus providing a checkpoint that pre-
vents uncontrolled T lymphocyte proliferation. Blocking
CTLA-4 with monoclonal antibodies and interfering with
this checkpoint has shown great enhancement of tumor-spe-
cific T lymphocyte expansion and killing in studies involv-
ing solid tumors (24). Although autoimmune phenomena
(especially involving the gastrointestinal tract) arise as com-
plications of this strategy, they are easily manageable with
additional therapies (24, 25). In the case of MDS, anti-
CTLA-4 therapy may remove the prohibiting checkpoints on
pre-existing T lymphocyte immunity against the abnormal
progenitor clone.

The highly promising results of ipilimumab in patients
with metastatic melanoma have provided a model for poten-
tial use of anti-CTLA-4 therapy in a wide variety of tumors.
Results of early phase 2 and phase 3 trials in a wide variety
of cancers have demonstrated feasibility, safety, and activity
of these agents, thus suggesting a potential therapeutic role
of anti-CTLA-4 therapy to be further investigated in MDS
(26, 27). There are currently two ongoing clinical trials
(ClinicalTrials.gov: NCT01757639, ClinicalTrials.gov:
NCT02530463) investigating the activity of ipilimumab (an
anti-CTLA-4 monoclonal antibody) against advanced stage
MDS.
Programmed cell death protein 1 (PD-1) is another inhibi-

tory molecule expressed by T lymphocytes. PD-1 also func-
tions as an immune checkpoint by inducing the apoptosis of
antigen specific T lymphocytes while inhibiting the apopto-
sis of regulatory T lymphocytes (28). This provides the basis
of using another class of drugs, PD-1 inhibitors, to enhance
immune system activation and increase anti-tumor activity of
T lymphocytes. Anti-PD-1 agents, such as the monoclonal
antibody nivolumab, have also shown remarkable response
rates and activity against several solid tumors (27, 29). Like
anti-CTLA-4 agents, anti-PD-1 inhibitors may also prove to
be beneficial in MDS, improving responses and prolonging
survival. Currently, the efficacy of nivolumab against MDS
is being investigated in an ongoing clinical trial (ClinicalTri-
als.gov: NCT02530463). Another anti-PD-1 monoclonal
antibody, pembrolizumab, is being studied in a phase 1
clinical trial involving patients with MDS and other
advanced hematologic malignancies (ClinicalTrials.gov:
NCT01953692).

Bone marrow microenvironment and stromal

cells

Abnormal bone marrow microenvironment and altered func-
tions of bone marrow stromal cells and mesenchymal stro-
mal cells play an important role in the pathogenesis of
MDS. Mesenchymal stromal cells in bone marrow samples
from patients with MDS have shown pronounced chromoso-
mal abnormalities and dysfunction (30). Similarly, bone mar-
row stromal cells derived from patients with MDS have
been shown to function abnormally, producing high levels
of inflammatory cytokines such as TNF-a and IL-6 (31).
These abnormalities in the microenvironment result in dis-
ruption of the integrity of normal hematopoiesis, leading to
an increased apoptotic index, aberrant cellular biology, and
dysplasia of bone marrow progenitor cells. An abnormal
microenvironment may also function as a milieu for selec-
tive expansion of the MDS clone and lead to disease pro-
gression (18). Based on these findings, therapeutic strategies
that target the interaction of abnormal cells with their
microenvironment may delay/halt disease progression and
increase the sensitivity of abnormal cells to other therapeutic
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agents. An example of such a strategy is blocking the inter-
action between the chemokine ligand CXCL12 and its recep-
tor CXCR4, which is a major mechanism of interaction
between cells and their microenvironment (32). However,
the effectiveness of this strategy has yet to be studied in
more detail.

Aberrant RNA splicing

Post-transcriptional premessenger RNA (pre-mRNA) pro-
cessing involves splicing to generate mature mRNA tran-
scripts for translation into functional proteins. The
spliceosome is composed of small nuclear ribonucleoproteins
(snRNPs) and other accessory proteins essential for spliceo-
some assembly, alternative splicing, and recognition of
spliceosome donor and acceptor sites (33). Somatic muta-
tions in genes encoding different spliceosome components
have been described in ~45–80% of patients with MDS (33,
34).
SF3B1 mutations are most frequent and exhibit a strong

correlation with the presence of bone marrow ring siderob-
lasts (35). Other mutations include SRSF2, ZRSR2, and
U2AF1 (33, 36). Majority of the spliceosome mutations lack
frameshift and nonsense changes, indicating either neomor-
phic (altered function) or gain-of-function alterations in
splicing proteins (3, 37). Hence, therapeutic inhibition of the
altered spliceosome may be an attractive choice for targeted
therapy.

Cellular senescence and telomeres

Cellular senescence is a process by which normal cells lose
their ability to divide after a specific number of cell divi-
sions. Senescence in the context of MDS is related to short-
ening of telomeres, which are repeat sequences of DNA
added to chromosomes by telomerase. MDS progenitor cells
have been shown to have abnormal shortening of telomeric
repeat sequences. Studies using southern blot, quantitative
polymerase chain reaction (PCR), multiplex-quantitative
reverse transcriptase-PCR, and flow-FISH have shown large
reductions in telomere length in MDS blasts relative to cells
from healthy controls, with no correlation with gender or
age (38, 39). These studies have also shown large variations
in telomere length among MDS patients, with shorter telom-
ere length correlating with complex karyotypes, higher IPSS
scores, marked transfusion dependence, greater percentage of
bone marrow blasts, and higher risk of developing AML.
Telomerase mutations/polymorphisms can occur sporadically
in MDS. Notable mutations in this context affect the TERC
(telomerase RNA component), TERT (telomerase reverse
transcriptase component), RTEL1 and TINF2 genes, which
have been shown to affect the telomerase complex activity
and are correlated with shortened telomeres in patients with
MDS carrying the mutations (40–42), and may also be one

of the factors responsible for de novo MDS in younger
patients (43).
Data from a recent study involving mouse models of

MDS show that telomere dysfunction-induced DNA damage
brings about cellular events that affect several cellular pro-
cesses, including homogenous downregulation of genes
encoding the mRNA-spliceosome machinery, particularly the
SRSF2 gene (40). SRSF2 is an extensively studied splicing
factor playing an integral role in mRNA splicing (36). Treat-
ing the mouse models with VE-821, an ATR-kinase inhibi-
tor, leads to significant improvement in mRNA splicing in
bone marrow progenitor cells, indicating an ATR-kinase-
mediated pathway is responsible for altering the expression
of splicing genes in cells with telomere dysfunction. Interest-
ingly, the same study showed that SRSF2 haploinsufficiency
resulted in increased number damaged DNA foci related to
telomere dysfunction, signifying that SRSF2 mutations/dele-
tions lead to abnormal splicing of mRNA transcribed by
genes responsible for telomere maintenance (40). These find-
ings advocate a close relation between mRNA splicing and
telomere maintenance biology.
Telomere dysfunction-induced DNA damage was also

shown to selectively down-regulate the expression of genes
encoding the cohesin complex (RAD21, STAG1, SMC2, and
SMC5), which plays a key role in the detection and repair of
DNA postreplication and are commonly found to be mutated
in MDS and AML (40, 44).

DNA methylation and epigenetic silencing

Molecular events affecting the epigenetic regulation of genes
are also notable processes in the pathophysiology of MDS.
Hypermethylation of CpG islands within the promotor
regions of several genes, such as DNA repair genes, cell-
cycle regulators, and apoptotic genes, leads to epigenetic
silencing and is one of the most common molecular abnor-
malities in the pathogenesis and clonal evolution of MDS
(12, 45). In this context, TET2 is the most commonly
mutated epigenetic regulator gene in MDS (approximately
25% of patients) (46). TET2 encodes a protein involved in
demethylation of DNA by hydroxylating the modified DNA-
based methyl-cytosine to hydroxymethyl-cytosine and plays
an important role in normal hematopoiesis and stem cell dif-
ferentiation (47). To date, the prognostic relevance of TET2
mutations in MDS remains unclear (48). Recurrent mutations
involving the DNMT3A and DNMT3B genes (encoding
DNA-methyltransferases 3A and 3B, respectively, which
modulate epigenetic regulation via methylation of CpG
islands on DNA) are found in up to 8% of patients with
MDS and also correlate with worse overall survival and
accelerated transformation to AML (49). Mutations affecting
the isocitrate dehydrogenase (an enzyme responsible for the
oxidative decarboxylation of isocitrate to alpha-ketoglutarate)
genes, IDH1 and IDH2, are observed in 4–12% of patients
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with MDS. These mutations result in the accumulation of
(D)-2-hydroxyglutarate which inhibits the function of
enzymes that are dependent on alpha-ketoglutarate, leading
to hypermethylation of DNA and histones which results in
aberrant gene expression that can activate oncogenes and
inactivate tumor-suppressor genes (50). They are associated
with adverse prognosis in patients with MDS harboring these
mutations, especially in the IDH1 gene (49). Enhancer of
zeste homolog 2 (EZH2) is a histone-lysine N-methyltrans-
ferase that catalyzes the methylation of histone H3 at lysine
27 (51). EZH2 mutations occur in approximately 6% of
patients with MDS and are frequently observed in early-
stage, low-risk MDS while being exceptionally rare in AML,
which is an interesting finding considering the fact that EZH2
mutations predict adverse outcomes and reduced overall sur-
vival (52). The ASXL1 gene (a regulator of epigenetic mark-
ers and gene expression by interacting with polycomb-
complex proteins and various transcription activators and
repressors) (53) is another frequently mutated gene in MDS
(in 10–20% of patients) which shows a positive correlation
with shorter time to evolution into AML and shorter overall
survival (54).

Hypomethylating agents, such as 5-azacitidine and decita-
bine, inhibit DNA-methyltransferases 3A and 3B and are
currently US FDA approved for the management of MDS
(12, 45). IDH inhibitors have demonstrated good clinical
activity in patients with myeloid malignancies. Currently,
two IDH inhibitors, AG-120 targeting IDH1 and the AG-
221 targeting IDH2, are being investigated in clinical trials
(ClinicalTrials.gov NCT02074839 and ClinicalTrials.gov
NCT01915498, respectively). Preliminary results from these
two studies have shown clinical activity in AML patients.
AG-120 has shown complete response (CR) rates of 15%
and an overall response rate (ORR) of an encouraging 31%,
with responses lasting up to 11 months (55). Similarly,
AG221 has shown CR rates of 17% and ORR as high as
40%, with the duration of responses up to 15.7 months (56).
Both agents have proven to be well-tolerated with limited
side effect profiles in both ongoing clinical trials.
There are other agents targeting epigenetic dysregulation.

These include inhibitors of DOT1L (a H3K79 histone
methyltransferase), for example, EPZ004777 (57), and
lysine-specific demethylase 1 (LSD-1), for example,
GSK2879552 (58), which have shown activity in AML,

Figure 1 Key pathogenic mechanisms in the development of myelodysplastic syndromes and targeted therapies with novel agents.
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indicating that MDS may also be amenable to treatment with
these agents. Several inhibitors of bromodomain and extra-
terminal (BET) proteins, such as I-BET151, I-BET762, and
JQ1, have proven to be potential targeted therapies for
hematological malignancies (59). Currently, CPI-0610,
another BET inhibitor, is being investigated in a phase 1
study involving patients with AML, MDS, and myeloprolif-
erative neoplasms (ClinicalTrials.gov NCT02158858).

Other mechanisms

Several other mechanisms have been associated with the
pathogenesis of MDS. For example, iron dysregulation with
abnormal mitochondrial ferritin has been associated with
MDS, especially in the refractory anemia with ringed sider-
oblasts subtype (60, 61). Another mechanism is abnormal
control of apoptosis. Early-stage MDS shows an increase in
the expression of pro-apoptotic proteins, such as Bax and
Bad, which leads to widespread progenitor cell death and
may account for hypercellular marrow often seen in early-
stage disease. As MDS progresses, the abnormal clone
demonstrates overexpression of Bcl-2, an anti-apoptotic pro-
tein which is found to be high in late stage and high-risk
MDS (2, 60), accounting for unchecked proliferation of
MDS blasts and development of AML.
An understanding of these multiple mechanisms involved

in the pathogenesis in MDS will ultimately lead to opportu-
nities to develop targeted therapies. Targeted therapies
specific for these defects may possibly hold minimal side
effect profiles with impressive response rates, thereby
improving therapeutic outcomes and quality of life for
patients afflicted with MDS. Some of the pathways
discussed in this review are illustrated in Fig. 1.
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