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Abstract
The impact of CVT on the brain is wide spectrum,

ranging from completely normal parenchyma to brain oede-
ma and/or haemorrhage. Multiple factors relate to neuronal
injury in CVT including; dural sinus pressure, increased
venous flow velocities, collateralization of venous chan-
nels, rate of occlusion, development of cytotoxic and vaso-
genic oedema, recanalization and accelerated myelination.
It is suggested that recanalization of occluded vein, as well
as, the presence or absence and the efficiency of intracranial
venous collaterals, may have an impact on the extent of
brain tissue damage and hence the prognosis of acute CVT.

Introduction
Cerebral venous thrombosis (CVT) is an uncommon

condition and knowledge regarding cerebral venous circula-
tory disturbances and the mechanism of neuronal injury is
scarce. Cerebral venous thrombosis (CVT) is regarded as a
continuing process of imbalance between prothrombotic
and thrombolytic processes that results in the formation and
later on progression of thrombus in the cerebral venous
sinus.1,2 

The mechanism of neuronal injury in CVT has been
a subject of great interest by researchers. The impact of
CVT on the brain is wide spectrum, ranging from complete-
ly normal parenchyma to brain oedema and/or haemor-
rhage.3-5

The outcome of venous thrombosis depend upon the
cerebral blood flow, cerebral venous pressure and cerebral
perfusion pressures. Only in the circumstances, when
venous occlusion results in significant raise in cerebral
venous pressure that is sufficient to lower cerebral perfusion
pressure to the extent that auto-regulation is hampered, neu-
ronal injury results.3

Multiple factors relate to the extent of neuronal
injury in CVT including; dural sinus pressure, venous flow
obstruction, collateralization of venous channels, rate of
occlusion, development of cytotoxic and vasogenic oede-
ma, recanalization of venous channels and development of
infarction and haemorrhage. Although these factors are
inter linked and one factor leads to another one, we will dis-
cuss these factors separately for simplicity.

Mechanism of neuronal injury in CVT could be

attributed to four pathophysiologic stages of CVT. 
1. Increased dural sinus pressure
2. Venous flow obstruction
3. Development of cytotoxic and vasogenic edema
4. Infarction and haemorrhage 

Increased Dural sinus pressure
Thrombosis of dural sinus especially superior sagit-

tal sinus leads to rise in dural sinus pressure. This pressure
could range from mild to severe and is probably one of the
most important factor underlying initial symptomatology of
CVT. The dural sinus pressure seem directly related to the
severity of parenchymal injury. Fong and his colleagues
identified five stages of brain parenchymal changes on MR
imaging, corresponding with the dural sinus pressure in
acute setting.6 These stages included stage 1; no parenchy-
mal change, stage 2; brain swelling, no signal change, stage
3; parenchymal signal change, stage 4; severe oedema with
or without haemorrhage, stage 5; massive oedema and or
haemorrhage. 

Rather higher pressure readings may be anticipated
in case of chronic obstruction as recanalization and collater-
alization try to minimize the parenchymal injury.6-8

Bousser3,4 and several others9,10 have described cer-
tain factors that result in various degrees of infarction after
venous occlusion. Presence of collateral channels and
recanalization are important as all venous occlusions do not
necessarily end up in the neuronal injury or infarction.
Massive brain oedema can be the only consequence in
Superior Sagittal Sinus thrombosis.3,4

Location of occlusion may be important. One study
showed that occlusion of posterior SSS leads to significant-
ly reduced Cerebral blood flow and haemoglobin oxygen
saturation.11 Increased dural sinus pressure may lead to
reduced capillary perfusion pressure12 and increased cere-
bral blood volume.13 Reduction of capillary perfusion pres-
sure and increased cerebral blood volume may lead to neu-
ronal injury at this stage.

Venous flow obstruction
Increment in venous flow velocity in course of

venous occlusion is well acknowledged by several studies
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conducted in humans and animal models.14-16 Stolz et al14

used transcranial duplex sonography (TCCS) for the evalu-
ation of venous drainage patterns in acute CVT. They
reported 69% of patients exhibiting pathological venous
flow. When the veins get thrombosed, there is increase in
back pressure, resulting in reversal of flow direction (pre-
dominantly in setting of transverse sinus and straight sinus
thrombosis) and increase in flow velocity. In the setting of
transverse sinus occlusion, compensatory increase in flow
velocity in the contra lateral sinus is also documented. In
sigmoid sinus thrombosis, increased flow velocity may lead
to enhanced drainage into cavernous sinus.

Venous flow obstruction causes raised intracranial
pressure (ICP) leading to blood brain barrier (BBB) disrup-
tion, resulting in decreased cerebral blood flow.13 These
abnormal venous flow and flow velocities found out to be
remarkably associated with headaches and papillaoede-
ma.14,15 Raised intracranial pressure as a result of these
haemodynamic changes is the possible explana-
tion.6,14,15,17,18 Valdueza and coworkers15 were the first to
correlate the venous haemodynamics to clinical findings in
CVT. They elucidated the declining consciousness level to
be directly related to the extent of venous flow velocity.
Venous outflow obstruction leads to moderate enlargement
of extracellular spaces. Experimental studies in cats showed
that SSS occlusion alone may not lead to BBB disruption
while thrombosis of cortical veins is invariably associated
with BBB disruption leading to extensive haemorrhagic
cerebral infarction.19

Presence of collaterals is an important determinant
of Neuronal injury in case of venous outflow obstruction.
Small cerebral veins drain blood from brain into larger veins
such as the Vein of Galen. These bigger veins empty into
dural sinuses which themselves are ultimately drained
mainly by the internal jugular veins.2,4 The brain surface is
provided with Pial collaterals and larger anastomotic chan-
nels through which the cerebral venous system is intercon-
nected. Owing to these widespread anastomoses between
cortical veins, venous territories are not as well defined as
the arterial territories.2-4 These collaterals help in maintain-
ing adequate cerebral flow and perfusion pressure in the
event of occlusion of large veins where only small portion
of vein is blocked, sparing the anastomotic channels.2-4,14

Hence, cerebral infarction only ensues when venous blood
does not find the alternate route due to the thrombus that is
occluding collaterals.3,5,14 This good collateralization of
cerebral venous system in addition to slow propagation of
thrombus elucidate the gradual onset of symptoms over the
period of weeks and months.1-4 However, large number of
cases present with acute onset of symptoms which most
likely represents acute thrombosis of a large sinus or corti-

cal vein over a subacute or chronic thrombotic process.2,4,14

Corollary to the venous thrombosis, new collaterals are
formed in these venous vessels1,3 but this neo-vasculariza-
tion is a slow process and does not have any impact in acute
setting rather aids in the reversal of neurological deficits
over a period of time.3,4

The rate of occlusion of cerebral veins is imperative in
determining the outcome of venous thrombosis.2,3 The slow-
er the rate of occlusion (as seen in tumor), the lesser would be
the chance of parenchymal damage. The reason being the
greater time availed for collateralization due to the slow rate.
Quite the reverse is true in the event of rapid occlusion that
often results in haemorrhagic infarction.3 Animal studies
have shown that aged brain is likely to be more vulnerable to
early and extensive hypoperfusion. Otsuka20 demonstrated
age related increase in the rate and size of venous infarct fol-
lowing cortical vein occlusion in 38 rats.

Recanalization of occluded vein or sinus may play
an important role in minimizing neuronal injury and pro-
moting neurological recovery. Studies have shown that
recanalization is associated with favourable outcome in
patients with CVT.14 CVT results in infarction only in 50%
of cases.14,21 Large areas of the brain are only functionally
or metabolically disturbed but not irreversibly damaged as
contrary to arterial cerebral ischaemia that usually is a
monophasic abrupt thrombotic process and there is only a
small penumbra.1 Thus lesions secondary to CVT may or
may not be resolved over a period of time.9,10

It is plausible that early recanalization of occluded
vein, as well as, the presence or absence and the efficiency
of intracranial venous collaterals, may have an impact on
the extent of brain tissue damage and hence the prognosis of
acute CVT.14,22 Animal model of CVT in rats revealed ini-
tial increase in lesion volume up to 5 hours secondary to
cytotoxic oedema. Subsequent recanalization of occluded
veins or improvement of collateral drainage and recovering
metabolism possibly attribute to the reduction in the volume
of lesions at 48 hours.22 Mullins and colleagues10 tried to
relate parenchymal abnormalities with clinical outcome in
13 patients. DW imaging in these patients disclosed three
lesion types with variable outcome; 1-lesions with elevated
diffusion that resolved, consistent with vasogenic oedema;
2-lesions with low diffusion that persisted, compatible with
cytotoxic oedema in patients without seizure activity; and 3-
lesions with low diffusion that resolved in patients with
seizure activity. Based on above mentioned findings, it is
conceivable that resolution of these lesions could be attrib-
utable to recanalization and recovery of cerebral blood
flow.10 This theory is further confirmed by the use of venous
transcranial duplex sonography (TCCS) in the study con-
ducted by Stolz et al14 that revealed normalization of venous
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TCCS on day 90 after the onset of symptoms of thrombosis
and MRA recanalization after 6±2 months. Normalized
TCCS may also reflect functionally sufficient venous collat-
eral pathways.14

Recanalization of venous sinuses after treatment has
been demonstrated by various studies using MRI and
MRVenogram.23-24 Straub  reported a case of transverse
sinus thrombosis in a young woman with protein S deficien-
cy who developed ipsilateral peripheral facial palsy during
course of her illness that resolved completely.25 This com-
plete resolution seems to be concomitant with the recanal-
ization of the transverse sinus.

Cytotoxic and vasogenic oedema
Cytotoxic and vasogenic oedema are both consid-

ered to occur in the setting of CVT.9,10,26,27 It has been con-
ventionally described that blood brain barrier is prone to get
damaged in the setting of raised retrograde venous pressure.
Hence, leakage of fluid (vasogenic oedema) ensues with
increase post capillary venules pressure and opening of tight
junctions.10 Alternatively, increased venous pressure leads
to increased intracranial pressure, decreased capillary perfu-
sion pressure and remarkably decreased cerebral blood
flow. This causes translocation of water content from the
extracellular to the intracellular space (cytotoxic oedema)
where water movement is more restricted, a mechanism in
keeping with patterns observed in acute arterial infarc-
tion.9,10,26

Many studies have looked at the mechanism of
cytotoxic oedema in patients with CVT and role of
microcirculatory changes in experimental CVT models in
relation to cytotoxicity and brain damage.22,27-30 Kirsten9

used diffusion weighted imaging in 12 patients with
acute CVT to confirm that cytotoxic oedema would also
occur in acute human cerebral venous infarction (CVI).
Eight regions of non-haemorrhagic lesions, consistent
with cytotoxic oedema, were detected in seven patients
within 2 days of symptom onset. In addition to this, they
found resolving cytotoxic oedema when those patients
were followed beyond 2 days of symptoms onset.
Kirsten's finding were in line with the research done by
Rother22 who induced venous thrombosis in rats by
injecting thrombogenic material into the superior sagittal
sinus that showed marked decrease in parenchymal ADC
at 30 minutes, followed by a steady increase in diffusion
(in keeping with vasogenic oedema) pattern over the
period of 2 days. This may also show the gradual pro-
gression of venous thrombosis. The resultant oedema, if
present in brainstem or basal ganglia may contribute to
the development of hydrocephalus by obstructing aque-
duct or foramen of Monro respectively. Thus, develop-
ment of cytotoxic and vasogenic oedema represent an
important landmark in CVT cascade. Neuronal injury at

this point is still reversible and has been shown by many
studies.31

Infarctions and haemorrhage
Infarctions and haemorrhage are endpoints of CVT

cascade. These are most important determinants of neuronal
injury and long term outcome of patients.32 Haemorrhagic
tendency in venous thrombosis is more frequent as contrary
to arterial thrombosis1, occurring approximately in 10-50%
of cases.2 Haemorrhagic infarctions principally affect the
cortex and gray-white matter junction.1-3,5 The bleeding in
CVT is attributable to increased venous and capillary pres-
sure.1,2 Small cortical veins are vulnerable to rupture in the
setting of these haemodynamic changes, resulting in bleed-
ing on the cortical surface.6 Sudden development of venous
occlusion due to thrombus, rather slow developing occlu-
sion is presumably responsible for the haemorrhagic infarc-
tion. 

Studies in various animal models ascertained that
rupture of cortical veins is fundamental in the development
of haemorrhagic infarction.13 Findings reported by Gotoh
et al13 are also in line with this theory. They evaluated blood
brain barrier disturbance in cats by occluding superior sagit-
tal sinus and cortical veins and noticed significant rise in
intracranial pressure, cerebral blood volume and brain water
content with SSS occlusion but haemorrhage ensued essen-
tially following superficial cortical veins occlusion, depict-
ing breakdown of blood brain barrier and resultant leakage
of blood through these ruptured cortical veins. Alteration of
cerebral microvasculature is considered to be the cause of
haemorrhage in CVT.28,33 Exact mechanism of vascular
injury in CVT is not well known. One study showed
increase in calpain expression manifested by loss of micro-
tubule - associated -protein 2 in experimental CVT model.
Calpains are intracellular proteases that are activated by
increased intracellular calcium with protolytic activity
mainly against cytoskeleton.34

Accelerated myelination
Focal accelerated myelination is a pathological state

and conventionally has a known association with Sturge-
Weber syndrome. There are anecdotal reports of association
of CVT with accelerated myelination. Porto L et
al35reviewed serial MR scans, MR angiography, conven-
tional angiography and the clinical progress of three chil-
dren with accelerated myelination and found 2 out of 3 chil-
dren with accelerated myelination had an underlying cere-
bral sinovenous thrombosis. They proposed that cerebral
venous thrombosis with the consequent restriction of
venous outflow could be a possible key factor in the induc-
tion of accelerated myelination. The exact association of
accelerated myelination and neuronal injury in patients with
CVT is not well understood.
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In conclusion, multiple factors contribute to neuronal injury
in patients with CVT. These include dural sinus pressure,
increased venous flow velocities, collateralization of venous
channels, rate of occlusion, development of cytotoxic and
vasogenic oedema, recanalization and possibly accelerated
myelination. It is suggested that recanalization of occluded
vein, as well as, the presence or absence and the efficiency
of intracranial venous collaterals, may have an impact on
the extent of brain tissue damage and hence the prognosis of
acute CVT. Neurological recovery or long term outcome is
dependent on extent of neuronal injury and early recanaliza-
tion of occluded sinuses. 
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