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M A J O R A R T I C L E

Rare, Highly Pyrimethamine-Resistant Alleles
of the Plasmodium falciparum Dihydrofolate
Reductase Gene from 5 African Sites

Sarah J. Bates,1 Peter A. Winstanley,2 William M. Watkins,2 Ali Alloueche,3 Juma Bwika,4 T. Christian Happi,5

Peter G. Kremsner,6 James G. Kublin,7,a Zul Premji,8 and Carol Hopkins Sibley1

1Department of Genome Sciences, University of Washington, Seattle; 2Department of Pharmacology and Therapeutics, University of Liverpool,
Liverpool, and 3London School of Hygiene and Tropical Medicine, London, United Kingdom; 4Centre for Geographical Medicine, Kenya Medical
Research Institute, Kilifi, Kenya; 5Malaria Research Laboratories, Institute for Advanced Medical Research and Training, College of Medicine,
University of Ibadan, Ibadan, Nigeria; 6Department of Parasitology, Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany,
and Medical Research Unit, Albert Schweitzer Hospital, Lambaréné, Gabon; 7The Malawi-Liverpool-Wellcome Trust Programme for Tropical
Medicine Research, Chichiri, Blantyre, Malawi; 8Department of Parasitology/Medical Entomology, School of Public Health and Social Sciences,
Muhimbili University College of Health Sciences, Dar es Salaam, Tanzania

In eastern and southern Africa, there has been a rapid increase in the prevalence of alleles with mutations in
the Plasmodium falciparum dihydrofolate reductase gene (dhfr) associated with increased risk of clinical failure
of sulfadoxine-pyrimethamine (S/P). Molecular methods for surveillance of these mutations are now wide-
spread, but the usual analysis detects only the most prevalent allele in a polyclonal sample. We used a yeast-
expression system to identify rare, highly pyrimethamine-resistant alleles of dhfr in isolates from 5 African
countries—Kenya, Tanzania, Malawi, Gabon, and Nigeria. Only the isolates from Nigeria yielded significant
numbers of novel resistant alleles, and only 1 of the alleles from any location showed a 13-fold increase in
resistance to S/P or to chlorproguanil-dapsone. Overall, these results suggest that dhfr alleles that confer high
levels of resistance to antifolates are rare, even in eastern and southern Africa, where pyrimethamine has been
intensively used.

As the effectiveness of chloroquine for treatment of

Plasmodium falciparum infections has decreased, coun-

tries in Africa have shifted to sulfadoxine-pyrimeth-
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amine (S/P) as the recommended treatment. Malawi

made that change in 1993, and other countries in east-

ern and southern Africa have recently followed suit [1,

2]. The pyrimethamine component of S/P is a com-

petitive inhibitor of the essential enzyme dihydrofo-

late reductase (DHFR; Enzyme Commission number

1.5.1.3), and sulfadoxine inhibits dihydropteroate syn-

thase (DHPS; Enzyme Commission number 2.5.1.15),

a key enzyme in folate biosynthesis [3]. Point mutations

in the dhfr gene are the principal mode by which re-

sistance to pyrimethamine evolves. The ease of molec-

ular analysis by polymerase chain reaction (PCR) has

produced substantial literature on the prevalence of the

polymorphisms in P. falciparum dhfr that are respon-

sible for resistance to pyrimethamine [3–18]. The most

common mutation correlated with resistance to pyri-

methamine is a change from serine to asparagine at

codon 108 (S108N) [19, 20], and additional mutations

at codons 51 and 59 progressively increase the resistance

to pyrimethamine [3, 21–23].
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In many sites in eastern and southern Africa, there has been

a rapid increase in the prevalence of the 51I/59R/108N triple

alleles, and this change is associated with an increased risk of

clinical failure of treatment with S/P [11, 14, 15, 24–30]. The

increasing failure of S/P stimulated the development of chlor-

proguanil-dapsone (LapDap; GlaxoSmithKline). Like S/P, this

drug is a combination: chlorcycloguanil, the metabolite of

chlorproguanil, inhibits DHFR, and dapsone inhibits DHPS.

Chlorproguanil-dapsone is clinically effective, even in areas

where resistance to S/P is high [24, 25, 31–33], and it has

recently been introduced in a number of countries [34]. Par-

asites that carry dhfr alleles with 1 additional mutation, an

isoleucine-to-leucine change at codon 164 (51I/59R/108N/

164L), are no longer sensitive to S/P or chlorproguanil-dapsone

[35]. These quadruple mutants became common in Southeast

Asia after only ∼6 years of S/P use, and new drugs were required

for treatment [36].

In many sites, polyclonal infections are common, and the

sensitivity of the standard PCR [37] is not sufficient to detect

alleles that include less than ∼10% of the parasites in an isolate.

If molecular analysis is to be useful as an early warning of rare

but potentially highly drug-resistant alleles, then methods for

their detection at very low levels are needed. We have used a

yeast-expression system [38, 39] to rapidly screen samples iso-

lated from patients in 5 African countries—Kenya, Tanzania,

Malawi, Gabon, and Nigeria.

METHODS

The P. falciparum DNA examined was collected as part of the

phase 3 safety and efficacy trial comparing the new, fixed-com-

bination antifolate drug chlorproguanil-dapsone with S/P [34].

This was a double-blind, placebo-controlled study, with 1480

patients in the chlorproguanil-dapsone arm and 370 patients

in the S/P arm. The samples were collected between March and

December 2000 at 5 sites: Kisarawe (Tanzania), Kilifi (Kenya),

Blantyre (Malawi), Lambaréné (Gabon), and Ibadan (Nigeria).

The samples examined in the present study were blood spots

from 25 patients who were judged by use of microscopy to

have parasites on day 14 after their initial treatment. Samples

obtained before treatment (day 0) and at day 14 were analyzed

for each patient. Informed consent was obtained from all pa-

tients or their parents for the study from which these samples

derived. The study met both US Department of Health and

Human Services guidelines and the guidelines established by

the home institutions in each study site. Permission was granted

for analysis of the parasite DNA in our laboratory.

Genomic P. falciparum DNA was initially extracted from

dried blood spots on filter paper by use of methanol precipi-

tation or by use of the blood sample DNA extraction protocol

from a commercial kit (QIAamp; QIAGEN). The dhfr gene was

amplified by use of PCR with PfuTurbo polymerase (Strata-

gene) with proofreading activity, to minimize replication errors

during PCR. Samples that yielded interesting alleles were re-

analyzed and resequenced to ensure that the alleles were not

PCR artifacts. The 50-mL reaction contained 1 mL of PfuTurbo

polymerase, 1� PCR buffer, 0.5 mmol/L each primer, 0.4 mmol/

L dNTPs, and 5–10 mL of template DNA. The 5′ primer used

was CTCCTTTTTATGATGGAACAAGTCTGCGACGTTTTCG,

and the 3′ primer used was TCATATGACATGTATCTTTGTCA-

TCATTCTTTAAAGGC. The cycling parameters were as follows:

initial denaturation for 3 min at 94�C, 30 cycles of denaturation

for 30 s at 94�C, annealing for 45 s at 50�C, elongation for 1

min at 72�C, and final extension for 10 min at 72�C. For each

amplification, a water control was performed and transformed

into yeast; these yielded no colonies, confirming that no con-

tamination had occurred during the PCRs.

The Saccharomyces cerevisiae yeast strain TH5 lacks endoge-

nous DHFR activity and has been described elsewhere [39]. The

yeasts were transformed with a gapped plasmid GR7 [8, 39] and

the linear dhfr products of the PCR by use of a high-efficiency

lithium acetate protocol [40]. Transformants were plated onto

medium lacking tryptophan and deoxythymidine monophos-

phate. Colonies were arrayed on master plates and sequentially

replica-plated onto plates containing rich medium and 5�10�4

mol/L pyrimethamine dissolved in DMSO (Pierce) and onto

control plates with rich medium and DMSO only. The drug

concentration was determined to allow growth of only the col-

onies that were more resistant to pyrimethamine than those that

expressed the 51I/59R/108N dhfr genotype. In addition, 5 un-

selected isolates from each sample were chosen at random from

plates containing no drug and were processed for automated

sequencing (MegaBACE; Amersham Biosciences).

The IC50 assays were performed to obtain quantitative mea-

sures of drug sensitivity, as described elsewhere [38]. In brief,

the growth of the yeast in this assay depends on the resistance

to antifolate of the dhfr allele expressed. Yeasts were grown in

96-well plates in pyrimethamine or chlorcycloguanil (0–5�10�4

mol/L) or WR99210 (0–10�5 mol/L) (all drugs were a gift from

Jacobus Pharmaceutical). The growth of the yeast in each well

was assessed by reading the optical density at 650 nm after ∼24

h of incubation at 30�C. The numerical IC50 value was calculated

from the slope and intercept of the line defined by the 2 data

points that bracket 50% relative growth. IC50 assays were per-

formed at least twice for each allele, to ensure reproducibility.

RESULTS

The aim of the present study was to identify rare alleles of dhfr

that encode enzymes with a very high level of resistance to

pyrimethamine. The samples examined were from patients in

the phase 3 trial of the new antifolate combination, chlorpro-

guanil-dapsone [34]. The 25 patients studied were treated with

either S/P or chlorproguanil-dapsone and remained parasite-
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Figure 1. The overall plan for the study. Day-0 and day-14 isolates from
the 25 patients who still retained parasites 14 days after treatment with
either chlorproguanil-dapsone or sulfadoxine-pyrimethamine were studied
as indicated.

mic 14 days after treatment. Parasite DNA from both the day-

0 and the day-14 samples was isolated, and the dhfr domain

of the dhfr-ts gene was amplified and integrated into a yeast

shuttle plasmid by homologous recombination. The centromere

on the plasmid ensures that each resulting yeast colony contains

only 1 dhfr allele, allowing for the unambiguous identification

of individual alleles from samples that are polyclonal. The basic

strategy is outlined in figure 1.

The standard allele-specific oligonucleotide or restriction-

digestion methods [37] identify alleles that are present at a

frequency of ∼10%, but our goal was to detect rare resistant

alleles. Both approaches use PCR, but our emphasis on rare

alleles made it crucial to ensure that we did not generate these

rare alleles in the amplification reaction. To test this, we am-

plified the triple-mutant allele (51I/59R/108N) with the high-

fidelity polymerase, PfuTurbo, cloned the products of the reaction

into yeast, and screened the resulting colonies with the same

protocol used for analysis of the field samples. We screened 1100

individual colonies on plates with mol/L pyrimeth-�45 � 10

amine. This level of drug was chosen to allow growth of colonies

that are only slightly more resistant than those with the 51I/

59R/108N allele, to ensure that we did not miss any alleles that

fell into this group. As a result, about half of the colonies we

observed on these screening plates carried the 51I/59R/108N

allele with no modification. In this control experiment, only

19 of 1100 colonies grew on the selective plates. The sequence

of the dhfr gene in these 19 colonies and in 20 colonies from

a plate with no drug was determined. No synonymous or non-

synonymous mutations were detected in any of these sequences;

all carried a dhfr allele with only the “parental” 51I/59R/108N

genotype and no additional mutations. In addition, only 2 syn-

onymous mutations were detected among 12,616 dhfr alleles se-

quenced from the Kenyan, Tanzanian, Malawian, and Gabonese

samples. The very low number of silent changes indicated that

the few mutations we did observe were most likely to have orig-

inated from the samples and did not result from high levels of

polymerase errors during the amplification.

The analysis of the isolates was done in 2 parts. First, the yeast

colonies were plated with no drug selection, and the dhfr was

sequenced from at least 5 independent colonies. These sequences

allow the identification of the predominant alleles in the sample,

including any alleles that carry simple polymorphisms unrelated

to drug resistance. The initial amplification of all 25 samples

collected before treatment was successful; 2 samples from the

Tanzanian set and 2 from the Nigerian set did not yield any

product after amplification of the sample collected on day 14.

The list of unselected genotypes in table 1 summarizes these data.

In 4 of the 5 locations, the triple-mutant allele (51I/59R/

108N) was clearly prevalent, and this genotype comprised 80%

of the alleles observed overall. Among the 3 patients from Kis-

arawe, Tanzania, 1 sample showed only the triple-mutant allele,

but the other 2 were predominantly wild type (wt). Four novel

alleles were observed; 1 patient from Tanzania and 1 from

Gabon each had a single allele that carried a mutation in ad-

dition to 51I/59R/108N. Two patients from Nigeria had a single

novel allele, and 1 patient carried 3 different alleles. We have

previously intensively mutagenized P. falciparum dhfr, to iden-

tify mutations that could encode a functional, resistant enzyme

[41, 42].

The transformed colonies were then arrayed on plates and

sequentially replica plated onto plates that contained 5 � 10�4

mol/L pyrimethamine. This concentration permits robust growth

of yeast that depends on the highly pyrimethamine-resistant

Southeast Asian allele, 51I/59R/108N/164L, but inhibits the

growth of yeast colonies that carry only the 51I/59R/108N ge-

notype. Figure 2 shows an example of such an experiment. All

colonies that grew vigorously on the drug plates were isolated,

and the DNA sequence of dhfr was determined. Table 1 sum-

marizes these data, as well. As noted above, about half of the

colonies tested carried only the 51I/59R/108N genotype. The

most common new allele isolated, 51I/59R/108N/213A, was

observed in all sites except Tanzania. We observed 2 other alleles

that had been isolated previously from the field or in the lab-

oratory [42, 43]—a Kenyan allele with a fourth mutation at

codon 188 (51I/59R/108N/188K) and a Gabonese allele with a

change at 189 (51I/59R/108N/189R).

In contrast, the samples from Nigeria had 6 novel alleles with

numerous mutations. Two of these included the same 213A

mutation (51I/59R/108N/213A), and a third carried a N51I/

C59R/D91N/S108N/V213A genotype. Two other patients in the

Nigerian set each carried a novel quadruple-mutant allele, 51I/
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Table 1. Summary of the novel pyrimethamine-resistant alleles identified in the 5 African sites.

Site

Total
no. of

patients

Colonies with unselected genotypes Novel pyrimethamine-resistant genotypes

No.
Mutations found
without selection Total

N51I/C59R/S108N plus
single aa change Other genotypeswt 51/108 59/108 51/59/108

Kilifi, Kenya 6 6 10 7 42 … 65 N188K (day 0) and V213A

(day 14)
C59R/S108N/V213A (day 0)

Kasarawe, Tanzania 3 10 4 0 9 K19M 24 … …

Blantyre, Malawi 3 0 2 0 28 … 30 V213A (day 0) and V213A

(�2) (day 14)
…

Lambaréné, Gabon 5 0 0 0 59 K56R 60 S189R V213A (day 14) …

Ibadan, Nigeria 8 0 10 0 80 E25G (x 2) T215A M92I 95 I200M V213A (day 0) and
P113L V213A I164V

(�2) (day 14)

N51I/S108N/V213A

N51I/C59R/D91N/
S108N/V213A (day 0)
and C50Y/N51I/C59R/
E84K/V86M/S108N/
I164V (�2) (day 14)

Total (%) 25 16 (5.8) 26 (9.4) 7 (2.5) 218 (79.5) … 274 … …

NOTE. Unselected genotypes are those identified by sequencing of the Plasmodium falciparum dhfr allele from at least 5 randomly chosen colonies.
Novel pyrimethamine-resistant genotypes are those observed in colonies that grew on the selective plates with mol/L pyrimethamine. Bold type�45 � 10
indicates mutations in addition to the triple mutant. aa, amino acid; wt, wild type; �2, mutation was found in 2 different samples.

59R/108N/164V, but the mutation at codon 164 differed from

the quadruple allele observed in Southeast Asia, 51I/59R/108N/

164L. In both patients, this 164V mutation was also observed

in combination with 3 additional changes, to produce an allele

with 7 differences from the wt (C50Y/51I/59R/E84K/V86M/

108N/I164V). To confirm that this highly mutant allele was not

generated by the PCR amplification, we performed a second in-

dependent amplification of 1 of these samples. The same highly

mutant allele was isolated in both analyses, making it extremely

unlikely that it is a PCR artifact.

The Nigerian samples also carried several silent substitutions

not seen elsewhere; 3 of 8 patients carried parasites with a

GAArGAG substitution at codon 202. Among these, 1 isolate

also carried a parasite with a silent GATrAAT change at codon

19, and another isolate carried a parasite with a TTGrTTA

change at codon 73. These numerous synonymous and non-

synonymous changes distinguished the Nigerian samples from

those at the other 4 sites. Since the polymerase and protocol

used for all of the samples were identical, this disparity also

suggests that the changes observed were not simply generated

by the PCR amplification.

On the basis of both the number of times we had isolated

an allele and our previous in vitro mutagenesis [41, 42], we

chose some of these alleles and performed IC50 assays to esti-

mate in yeast the level of drug resistance of the enzymes that

they encode. We determined the sensitivity of yeast dependent

on the canonical mutant dhfr alleles (51I/59R/108N and 51I/

59R/108N/164L) to pyrimethamine, chlorcycloguanil (the ac-

tive metabolite of chlorproguanil), and the experimental DHFR

inhibitor (WR99210) and compared them with novel mutant

alleles. Each yeast line was grown in 0–10�4 mol/L pyrimeth-

amine or chlorcycloguanil and 0–10�5 mol/L WR99210, and

the IC50 value (the concentration of drug that inhibited growth

of the yeast 50%, compared with the growth in the absence of

drug) was determined. Figure 3 shows average IC50 curves for

each allele analyzed. Figure 4A tabulates the actual IC50 values

for each drug, and figure 4B summarizes the fold change in

sensitivity between the triple mutant and each novel allele.

The plating screen was designed to identify yeast colonies

that were more resistant to pyrimethamine than the triple-

mutant allele, and the IC50 values show the expected trend: the

novel mutants confer a higher level of resistance to pyrimeth-

amine than the 51I/59R/108N allele. However, the IC50 values

of lines that carry alleles with 1 additional mutation (indicated

with bold type) at 213 (51I/59R/108N/213A) or 51I/59R/108N/

164V are roughly 3-fold higher, still substantially lower than

the 51I/59R/108N/164L, for which an IC50 value for pyrimeth-

amine cannot even be measured. Additional mutations in these

alleles (51I/59R/91N/108N/213A) or (C50Y/51I/59R/E84K/V86M/

108N/I164V) showed somewhat lower IC50 values, demonstrat-

ing that the additional mutations do not contribute to the

resistance to pyrimethamine. Only the alleles with a mutation

at codon 188 (51I/59R/108N/188K) or codon 189 (51I/59R/

108N/189R) showed resistance to pyrimethamine comparable

to that of the canonical quadruple-mutant N108/I51/R59/L164

allele; all 3 strains are so insensitive to pyrimethamine that an

IC50 value cannot be measured in this system.

As expected, the IC50 values for chlorcycloguanil were uni-

formly lower than those measured for pyrimethamine but fol-

lowed a similar pattern: the alleles with an additional mutation

at 213A or 164V were 13-fold more resistant to chlorcycloguanil

than 51I/59R/108N alone, and the additional mutations slightly

decreased resistance. The strains that carried the 188K, 189R,

and 51I/59R/108N/164L alleles were substantially more resistant
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Figure 2. A representative selective plate used to screen for pyrimethamine-resistant colonies. The dhfr coding region was amplified with PfuTurbo
polymerase (Stratagene) and inserted into the single-copy yeast plasmid by homologous recombination. All resulting colonies were arrayed as shown
without drug, and 5 were randomly chosen for determination of the dhfr sequence. The colonies were then sequentially replica plated onto plates with

mol/L pyrimethamine, and growth of each colony was assessed after 3 and 5 days at 30�C. The “triple-mutant yeast” is dependent on the 51I/�45 � 10
59R/108N genotype, and the triple +164L (51I/59R/108N/164L) mutant is the highly resistant mutant commonly found in Southeast Asia. The plasmid from
the single colony that grew on the selective plate was then isolated, and the sequence of the Plasmodium falciparum dhfr was determined.

than the strains carrying the triple mutants (51I/59R/108N) to

chlorcycloguanil, and, as observed for pyrimethamine, no IC50

value could be measured.

The experimental inhibitor WR99210 is extremely effective

against yeasts that carry P. falciparum dhfr alleles with �3 mu-

tations [39, 41–43]. Even the canonical quadruple-mutant allele

is quite sensitive to WR99210; in yeast, it has an IC50 value of

∼ mol/L, compared with values in the mol/�7 �83 � 10 2–4 � 10

L range measured for the other alleles. All of the novel alleles

except 51I/59R/108N/188K and 51I/59R/108N/189R were also

extremely sensitive to WR99210, with IC50 values in the range

of 10�8 mol/L. Like the 51I/59R/108N/164L allele, strains that

depended on the 51I/59R/108N/188K allele were 10–20-fold

less sensitive to that inhibitor, with an IC50 value of ∼4 � 10�7

mol/L. The 51I/59R/108N/189R allele conferred only a 6-fold

increase, with an IC50 value of mol/L.�71.3 � 10

In the present study, we isolated 10 novel alleles from 25

patients from a wide geographic area, and only the samples

from Nigeria yielded more than a few resistant alleles. In con-

trast, we previously identified 38 novel alleles with the same

method from only 6 isolates from a single location, Muheza,

Tanzania [43]. Table 2 compares these results directly.

The very small numbers of patients and the method we used

preclude a direct estimation of the prevalence of any particular

allele, but the paucity of novel alleles in the current data set is

clear. For example, 3 of the 6 patients from Muheza carried

the N51I/59R/108N/164L mutation, which is associated with

clinical failure of S/P in Southeast Asia. In this wider screen,

quadruple-mutant alleles with a 164V mutation were identified

in the Nigerian patients, but the 164L change was not observed

in any of the isolates identified in this screen.

DISCUSSION

In many sites in eastern and southern Africa, there has been a

rapid increase in the prevalence of the triple-mutant 51I/59R/

108N alleles associated with an increased risk of clinical failure

of treatment with S/P [3–16]. This trend is clearly reflected

here, as well; the triple-mutant allele was the most common in

4 of the 5 sites in which the trial was conducted, and this

genotype comprised ∼80% of the alleles sequenced in our study.

We designed the present study to identify rare dhfr alleles that

are likely to confer high levels of resistance to pyrimethamine.

The 17 isolates from 4 of the 5 sites in this study yielded only

4 novel resistant alleles, and only 2 of these (51I/59R/108N/

188K and 51I/59R/108N/189R) are in regions of the molecule

known to confer extremely high levels of resistance to pyri-

methamine [41, 42, 44]. The isolates from the fifth site, Nigeria,

did not follow this pattern. From the 8 Nigerian patients, we

isolated 6 highly mutant alleles, including a novel quadruple-

mutant allele with a mutation from isoleucine to valine at codon

164, carried by 2 different patients. Although the Southeast

Asian quadruple mutant carries a mutation at the same position,

that mutation encodes an isoleucine-to-leucine change. The en-

zymes encoded by the genotypes that carried the 164V change

did not confer levels of resistance comparable to the Southeast
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Figure 3. The sensitivity of yeast dependent on the novel dhfr alleles to pyrimethamine, chlorcycloguanil, and WR99210. Each strain was grown in
liquid in a 96-well plate with the indicated concentrations of each drug. After 18–24 h, the growth of yeast in each well was monitored by reading the
optical density at 650 nm. These curves show the average of 2–3 separate determinations, and the IC50 values in figure 4A were determined from the
graphs as shown. Because of the much higher potency of WR99210, the scales differ slightly in panel C; the highest concentration of pyrimethamine and
chlorcycloguanil used was 10�4 mol/L, but 10�5 mol/L was used for WR99210. SOLV, solvent alone (no drug).

Asian allele for any of the drugs tested. Overall, these results

suggest that alleles that confer high levels of resistance to anti-

folates are still rare in sub-Saharan Africa, even in eastern and

southern Africa, where pyrimethamine has been intensively used.

The very small numbers of patients and the method we have

used preclude a direct estimation of the prevalence of any par-

ticular allele, but the paucity of novel alleles in the current data

set, compared with the data from Muheza, is clear. In addition,

3 of the 6 patients from Muheza carried the N51I/59R/108N/

164L mutation, which is associated with clinical failure of S/P

in Southeast Asia. In this wider screen, quadruple-mutant alleles

with a 164V mutation were identified in the Nigerian patients,

but the 164L change was not observed in any of the isolates

identified in this screen.

Antifolate drugs have been used intensively in both areas for

longer periods than in most others in Africa, and there are high
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Figure 4. The comparison of drug sensitivity of selected alleles of Plasmodium falciparum dhfr to pyrimethamine, chlorcycloguanil, and WR99210. The
IC50 values for 2–4 experiments were calculated, and the average is reported in panel A. A graphical presentation of the fold change in sensitivity of each
novel allele, compared with the triple-mutant allele, (51I/59R/108N) is shown. †, The level of resistance to that drug was so high that no IC50 value could
be measured. B, Jagged bars, an IC50 value could not be measured, so the fold increase over the triple mutant allele could not be calculated.

levels of resistance to S/P in both areas [26, 45, 46]. The dom-

inance of triple-mutant alleles in all of the study locations makes

it clear that S/P-driven selection for mutant alleles of dhfr is

certainly in progress at all 5 locations, as well [14, 24, 47–50].

Whatever the selection pressure, the sites in Muheza and Ibadan

appear to have a deeper “reservoir” of alleles that are more re-

sistant to pyrimethamine than the triple mutant 51I/59R/108N,

compared with the sites in Kenya, Malawi, and Gabon.

Any method that requires PCR amplification runs the risk

of generating mutants simply from polymerase errors. Several

observations suggest that this has not been a problem in the

present study. First, the amplification of the triple-mutant allele

with the high-fidelity PfuTurbo polymerase produced no re-

sistant mutants in the 11000 colonies that we assessed, and

there was a striking paucity of silent substitutions. Second, 2

samples from patients in Tanzania had only wt parasites in the

nonselected colonies, and drug selection also yielded no resis-

tant alleles. Third, by use of in vitro mutagenesis, we have

previously generated a diverse set of alleles that can confer a

high level of resistance to pyrimethamine in this assay. This

result demonstrates that genotypes other than those observed

here could be generated by polymerase errors and isolated by
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Table 2. Comparison of screens of samples from 6 locations.

Variable
Muheza,
Tanzaniaa

Kenya, Tanzania,
Malawi, and Gabon Nigeria

Isolates screened, no. 6 17 8
Yeast colonies screened, no. 3994 12,616 7374
Novel alleles identified, no. 38 4 6

a Data are summarized from reference [34].

use of this method [42]. However, in these field samples, 1

allele, 51I/59R/108N/213A, was isolated in 4 of 5 sites and in

samples from 7 different patients, an unlikely occurrence if

these alleles were simply being generated at random during the

reaction. Finally, most of the alleles observed have a single new

mutation on a background of the common triple-mutant ge-

notype. These changes could not be generated by the poly-

merase “jumping” from 1 template to another during the am-

plification, another error that has been observed at low levels

in PCRs [51]. The highly mutant alleles from Nigeria could

have resulted from such an aberration, but the fact that the

same genotype was isolated from 2 individual patients and twice

during independent analyses of isolates from the same patient

greatly reduces the probability that these also are PCR artifacts.

Thus, we are confident that the novel dhfr alleles identified in

this screen were present at low levels in the samples.

One goal of the present study was to provide a baseline for

molecular surveillance of mutations in dhfr that are likely to

evolve in response to antifolate drug use. We have previously

used intensive mutagenesis in vitro to identify mutations of the

P. falciparum dhfr gene that encode functional, drug-resistant

forms of the enzyme [41, 42]. In both previous studies of dhfr

alleles isolated from patients’ samples, the same 2 regions of

the molecule with a disproportionate number of resistant mu-

tations have been identified: aa 188–191 and 213–215. Muta-

tions in aa 50–59, 108, and 164 are all observed frequently in

field isolates [43, 52]. Alleles with additional mutations in aa

188–191 or aa 213–215 have also been observed in vitro and

at low levels in the Muheza study [43]. The isolation of mu-

tations at codons 188 and 189 and at 213 in the current broader

sample follows this same pattern. Taken together, these data

suggest that it would be prudent to include assay of aa 188–

191 and aa 213–215 of the gene in a surveillance program de-

signed to provide early warning of selection of antifolate-resistant

populations of P. falciparum [18].

The sample set analyzed here derives from a single time point,

and a temporal study of changes in prevalence of rare resistant

alleles will be required to determine whether these alleles “in

the background” comprise raw material for selection by S/P.

High-throughput methods with greater sensitivity than the cur-

rent allele-specific PCR methods will be needed to identify re-

sistant alleles even when they are at low prevalence, and some

steps have already been made in that direction [15, 53–55].

Recent molecular studies show that, in highland areas of low

transmission close to Muheza, the triple-mutant alleles of dhfr

share the same extended haplotype, suggesting that a single

triple-mutant allele of dhfr has invaded the P. falciparum pop-

ulation and spread under drug selection [56]. More-extensive

studies in Southeast Asia and South America support this “se-

lective sweep” model of the selection process [57, 58]. This

outcome is surprising, since the increasing resistance to pyri-

methamine requires simply the acquisition of 1 additional point

mutation after another, and one might have predicted that

mutant alleles could arise repeatedly in situ on many different

haplotypes. The sample set analyzed here derives from a single

time point, and a temporal study of changes in prevalence of

rare resistant alleles will be required to determine whether these

alleles “in the background” comprise raw material for selection

by chlorproguanil-dapsone.

Chlorproguanil-dapsone has recently been introduced in a

number of African countries, including those in the present

study [34]. As yet, there are no clinical data that would allow

us to assess whether the modest increases in resistance to chlor-

cycloguanil that we observed in the yeast system would com-

promise the clinical efficacy of chlorproguanil-dapsone. How-

ever, the set of mutations that confer high levels of resistance

to chlorcycloguanil overlaps substantially with the set of mu-

tations that confer resistance to pyrimethamine [42, 59], so

selection of any of these novel alleles would certainly head in

the wrong direction. On the basis of the results of the present

study, only the N108/I51/R59/188K and the N108/I51/R59//

S189R alleles are likely to substantially increase resistance to a

level comparable to that of the 51I/59R/108N/164L allele [35].

Each of these alleles was found only once, suggesting that there

may not yet be a reservoir of these alleles, at least in the sites

tested in the phase 3 trial.

The biguanide prodrugs of the WR99210 class are currently

in preclinical development [60, 61], and the excellent effec-

tiveness of WR99210 against all of the alleles examined here is

encouraging. On the basis of the data reported here, we would

expect that none of the alleles we isolated would show serious

levels of resistance to drugs of the WR99210 class; definitive

information on this conclusion will depend, of course, on direct

clinical trials.

What can we learn from a limited “snapshot” of this kind?

Such a small sample cannot be extrapolated to general predic-

tions about resistance to antifolates in the sites at which the

original study was done and certainly cannot be expanded to

conclusions about nearby locations. Variation even within geo-

graphically or temporally related sites is far too high for those

kinds of predictions to be reliable [15, 62–64]. However, our

approach does allow qualitative comparisons, and it identifies

locations such as Muheza and Ibadan, where there has been

apparently strong selection for antifolate resistance in the past.
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In the sites sampled in Kenya, Tanzania, Malawi and Gabon, S/

P has been used for almost 10 years, and the triple-mutant allele

is prevalent. Under these circumstances, the low “harvest” of

resistant alleles is encouraging. This suggests that the combina-

tion of chlorproguanil-dapsone may have a reasonably useful

therapeutic life in those locations. The presence of these alleles

underlines the importance of developing and implementing sen-

sitive, high-throughput methods and of creating and maintaining

regional databases to serve as better early warning systems for

the emergence of alleles associated with drug resistance.
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