September 2008

Spot urine protein: creatinine ratio versus 24 hour urine protein at various levels of GFR patients referred to a tertiary care hospital of Pakistan

Absar Ali
Aga Khan University

Naila Asif
Liaquat National Hospital

Sonia Yaqub
Aga Khan University

Waqar Kashif
Aga Khan University

Diamond Merchant
Aga Khan University

See next page for additional authors

Follow this and additional works at: http://ecommons.aku.edu/pakistan_fhs_mc_pathol_microbiol

Part of the *Pathology Commons*

Recommended Citation

Available at: http://ecommons.aku.edu/pakistan_fhs_mc_pathol_microbiol/45
Authors
Absar Ali, Naila Asif, Sonia Yaqub, Waqar Kashif, Diamond Merchant, and Iffat Yazdant

This article is available at eCommons@AKU: http://ecommons.aku.edu/pakistan_fhs_mc_pathol_microbiol/45
matrix Gla protein, a potent calcification inhibitor in arterial vessels which is also expressed in the kidney have been shown to be associated with genetic susceptibility to urolithiasis. Similarly a high association of osteopontin gene polymorphism at position 9,402 has been suggested to be a likely candidate of genetic marker for evaluating the genetic risk of urinary calcium stone disease.8,9 These new findings suggest that there is significant relationship between the renal cell and its surroundings, and that this interplay between macro molecule, hyperoxaluria and genetic predisposition can greatly influence the stone formation. Factors that alter the surface properties of renal cells and/or that alter the secretion of urinary macromolecules promote urolithiasis. Further studies will be required to determine how this factor interacts with other factors (diet, climate, and genetics) that have been shown to play a role in the stone formation.

References

Original Article

Spot Urine Protein: Creatinine Ratio versus 24 Hour Urine Protein at Various Levels of GFR patients referred to a Tertiary Care Hospital of Pakistan

Absar Ali1, Naila Asif2, Sonia Yaqub3, Waqar Kashif4, Diamond Merchant5, Iffat Yazdani6
Aga Khan University Hospital1,3,4,5, Liaquat National Hospital Karachi, Pakistan2,6

Abstract

Objective: To determine the correlation of "random single voided urine protein: creatinine ratio" to "twenty four hour urine protein" at different levels of glomerular filtration rate (GFR) in Pakistani population.

Methods: A total of 107 patients were included in this cross section study. Patients were divided into five groups according to the GFR. Spot urine protein: creatinine ratio and 24 hour urine protein was measured by the standard methods. The correlation coefficient (r) between the two was calculated in each group separately.

Results: The GFR in groups 1 to 5 was > 90, 60-89, 30-59, 15-29, and <15 ml/minute/1.73m² respectively. In group one correlation coefficient r was 0.96, in group two r was 0.81, in group three r was 0.94, in group four r was 0.82 and in group five r was 0.80.

Conclusion: "Random single voided urine protein : creatinine ratio" may be used as an alternative to "24 hour urine collection for protein" at all levels of GFR in Pakistani population (JPMA 58:476;2008).

Introduction

Measurement of 24 hour urine protein is one the most important test ordered in the investigation of renal disease. It helps in reaching the correct diagnoses, making a judgment on prognosis, and formulating the treatment strategy1. The 24 hours urine protein excretion also distinguishes between macro and microalbuminuria. It is now known that microalbuminuria is a risk factor for developing overt diabetic nephropathy and cardiovascular disease2. The wide spread use of 24 hours urine protein excretion measurement forced the researchers to find a simpler and quicker method to get the result. One of the simpler methods is use of spot single voided urine protein/creatinine ratio as an alternative to 24 hours urine collection.

A number of papers are published on this subject in the western world but the data is relatively lacking in Pakistani population3-7. In addition, there is a concern by
some of the practicing physicians that random spot urine protein/Creatinine ratio may not give the accurate results if the GFR is severely compromised. To answer this question we decided to compare the 24 hours urine collection for protein to single voided (spot) urine protein /creatinine ratio at various levels of glomerular filtration rate (GFR). We also wanted to examine the notion "Urine Protein/Creatinine ratio is as good as 24 hour urine collection" in our community.

Patients and Methods

It was a cross section study of 107 patients who agreed to do "24 hours urine collection for protein and creatinine" and "Random single voided urine protein and Creatinine" at the same setting. Study was performed at Liaquat National Hospital, in collaboration with the department of medicine, Aga Khan University Hospital Karachi Pakistan.

All the cases of ≥18 years, referred for 24 hours urine protein and spot urine protein /Creatinine ratio, from June 1st 2006 for three months were included.

Urine collection method was explained in detail to the patients. Random urine sample was collected either before or after the 24 hours urine collection, but always within 12 hours.

The 24 hours urine protein and Creatinine were measured by Hitachi analyzer 912. Serum electrolytes and Creatinine were measured by Iova CRT analyzer. Urine analysis was done on urisays 1800 machine.

Protein and Creatinine were expressed in mg/dl. Weight of the patient was measured in kilogram and body surface area in meter². The 24 hour urine protein was expressed in gram/24h / 1.73 m². GFR was calculated by standard UV/ p formula and corrected to weight and body surface area of 1.73 m². All patients were divided in 5 groups according to glomerular filtration rate as follows:

1. GFR ≥ 90ml/min/1.73m²
2. GFR between 60-80 ml/min/1.73m²
3. GFR between 30-59 ml/min/1.73m²
4. GFR between 15-29 ml/min/1.73m²
5. GFR less than 15 ml/min/1.73m²

The grouping was done similar to chronic kidney disease classification for convenience. No attempt was made to distinguish between acute and chronic renal failure.

Statistical analyses were conducted by using the Statistical package for social science SPSS (Release 15.0, standard version, copyright © SPSS; 1989-02). A descriptive analysis was done for baseline characteristics of the patients and results are presented as mean ± standard deviation for quantitative and number (Percentage) for qualitative variables. Correlation was tested using the Pearson correlation coefficient. P<0.05 was selected as the level of significance.

Results

A total of 107 (male: 47, female: 60) participants were included in the study. Mean age was 49 ± 18.25 years. Table 1 shows the number of patients in each of the five groups.

Table 1: Baseline characteristics of study population (n=107)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, Years</td>
<td>Mean ± SD 49 ± 18.25</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>47(44%)</td>
</tr>
<tr>
<td>Female</td>
<td>60(56.1%)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>Mean ± SD 64 ± 13.57</td>
</tr>
<tr>
<td>Glomerular filtration rate, ml/min/1.73m²</td>
<td>Mean ± SD 35.15 ± 30.57</td>
</tr>
<tr>
<td>Median(IQR)</td>
<td>20(48-14)</td>
</tr>
<tr>
<td>Groups</td>
<td></td>
</tr>
<tr>
<td>> 90 ml/min/1.73 m²</td>
<td>7(6.5)</td>
</tr>
<tr>
<td>60-80 ml/min/1.73 m²</td>
<td>13(12.1)</td>
</tr>
<tr>
<td>30-59 ml/min/1.73 m²</td>
<td>24(22.4)</td>
</tr>
<tr>
<td>15-29 ml/min/1.73 m²</td>
<td>34(31.8)</td>
</tr>
<tr>
<td><15 ml/min/1.73 m²</td>
<td>29(27.1)</td>
</tr>
</tbody>
</table>

Table 2: Random single voided urine “Protein: Creatinine ratio” to “twenty four hour urine protein” at different levels of glomerular filtration rate (GFR) (n=107)

<table>
<thead>
<tr>
<th>Protein:Creatinine Ratio</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hour Urine Protein</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Spot Urine Protein/creatinine Ratio</td>
<td>Median(IQR) 2.90(6.80-1.20)</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>3.48 ± 3.30</td>
</tr>
<tr>
<td>Median(IQR)</td>
<td>2(4.80-1)</td>
</tr>
</tbody>
</table>

The mean spot Protein/Creatinine ratio and mean twenty four hour urine protein at different levels of GFR in the five groups is shown in Table 2.

Table 2: Random single voided urine “Protein: Creatinine ratio” to “twenty four hour urine protein” at different levels of glomerular filtration rate (GFR) (n=107)

<table>
<thead>
<tr>
<th>GFR ml/ minute</th>
<th>N</th>
<th>24 hour protein ¥</th>
<th>Protein/creatinine Ratio ¥</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 90</td>
<td>7</td>
<td>4.92 ± 4.83</td>
<td>5.03 ± 5.07</td>
</tr>
<tr>
<td>60 - 89</td>
<td>13</td>
<td>5.64 ± 3.72</td>
<td>5.48 ± 3.52</td>
</tr>
<tr>
<td>30 - 59</td>
<td>24</td>
<td>3.15 ± 3.16</td>
<td>3.77 ± 4.26</td>
</tr>
<tr>
<td>15 - 29</td>
<td>34</td>
<td>2.56 ± 2.81</td>
<td>3.48 ± 3.14</td>
</tr>
<tr>
<td>< 15</td>
<td>29</td>
<td>3.49 ± 3.0</td>
<td>5.36 ± 4.65</td>
</tr>
</tbody>
</table>

The correlation between "Protein: Creatinine ratio" values in spot urine specimens and "24 hour urinary protein" excretion at different levels of GFR were checked. The results can be seen in Figure.
Discussion

Urinary protein excretion rate measurement is the fundamental test in the work up of any nephrology case. Dipstick is the most commonly used test to check urinary protein. However, it has minimal to nil value in the quantification of the protein, because it depends not only on the amount of protein but also on the volume of urine at the time of testing.

Twenty four hours urine collection to measure protein and creatinine is a traditional and long tested method and considered a "gold standard". It is now known that this method is not free of caveats. The main problem is accuracy of collection, which usually depends upon the patients. To circumvent this 24 hours collection procedure, the scientists ultimately discovered the very simple method of single voided spot urine patient/creat ratio. It is claimed that spot protein /creatinine ratio corresponds to 24 hours urine protein excretion. For example if the spot urine protein is 300 mg / dl and spot urine creatinine is 150 mg / dl, the ratio will be 300 / 150 = 2 which means 24 hours urine protein excretion is 2 gram.

Use of single voided urine prot/creat ratio as an alternative to 24 hours urine collection was suggested first in 1980s\(^7\). Thereafter several articles have been published on this topic. Some concerns were raised regarding the variables affecting the results. One of the factors was the effect of body mass\(^10\). It is suggested that low muscle mass may overestimate and high muscle mass may under estimate the proteinuria. The timing of single voided urine has been a matter of debate\(^6\). The protein /creat ratio may vary with ethnicity and race too\(^11,12\). It is generally thought that this variability is not necessarily clinically important. In addition, orthostatic proteinuria may be missed by protein /creat ratio.

In the presented study the results of spot urine protein /creatinine ratio was correlated with 24 hour urine protein excretion at different levels of GFR. It was hypothesized that spot urine protein/creat ratio method may overestimate the 24 hour protein excretion rate at low GFR. The patients were divided in 5 groups according to the GFR. The protein/creat ratio was used instead of albumin/creat ratio. A number of studies support that prot/creat ratio is similar to albumin/creat ratio if 24 hours protein excretion is more than 500 mg\(^13\). In our study all the patients had proteins more the 500 mg/24hrs. Cases with microalbuminuria were not included.

The correlation coefficient between 24 hour protein and spot urine prot/creat ratio was significant (0.80 to 0.96) in all five groups, confirming that the ratio can be used instead of 24 hours urine collection. However the result of group 5 (GFR= less than 15 ml/min) was not very convincing.

Conclusion

The study concluded that a random single voided urine protein/creatinine ratio is an alternative to 24 hour urine collection at all levels of GFR. Single voided protein/creatinine ratio may overestimate the protein excretion at lower levels of GFR.

Acknowledgement

Authors are thankful to Mr. Muhammad Naveed Iqbal of Liaquat National Hospital; and Miss Safia Awan and Siddiq Choudhry of Aga Khan University for technical support.

References

7. Schwab SJ, Christiansen L, Dougherty K, Klahr S. Quantitation of proteinuria by the use of protein to creatinine ratio in single urine samples. Arch Intern Med 1987; 147:943-44
Original Article

The Frequency of Prostatic Involvement in Radical Cystectomy Specimens for Transitional Cell Carcinoma of the Bladder
Abbas Basiri, Ardalan Ozhand, Hormoz Karami, Halimi Asl Parham, Mohammad Reza Safarinejad
Urology and Nephrology Research Center, Department of Urology, Shaheed Labbafinejad Hospital, Shahid Beheshti University (MS), Tehran, Iran

Abstract

Objective: To evaluate the frequency of prostatic involvement in pathologic samples of the patients who had undergone radical cystectomy due to transitional cell carcinoma (TCC) of the bladder.
Materials: The files of the patients who had been subjected to radical cystectomy due to bladder TCC between 1998 and 2004 were evaluated retrospectively. A total of 164 radical cystectomies had been done during this period. Seventeen cases were excluded because the primary tumour was not TCC or the patient had previously undergone prostatectomy.
Results: Of 147 patients, 36 (24.4%) had prostate TCC and 19 (12.9%) had prostate adenocarcinoma. Two patients had both TCC and prostate adenocarcinoma. Twenty-one cases had superficial bladder cancer (T1) and prostatic involvement was detected in TCC cases but in 9.5% of those with adenocarcinoma. The prevalence of prostate adenocarcinoma in radical cystectomy samples (due to bladder TCC) is much lower in Iranian patients in comparison with the European and American patients (vs 12.9 and 17.5 to 45%, respectively).
Conclusion: Prostatic involvement by TCC had a direct relation with the stage (P=.01) and grade (P=.008) of the bladder tumour. If we try to preserve the prostate or its capsule during the radical cystectomy procedure, attention to these findings is worthwhile (JPMA 58:479;2008).

Introduction

The distribution of cancer varies significantly from country to country all over the world. The latest estimates of global cancer incidence show that prostate cancer has become the third most common cancer in men, with half a million new cases every year, almost 10% of all cancers in males. The lifetime risk of clinically detected prostate cancer is 9.5%, and the probability of dying from prostate cancer is 3%. The frequency of incidentally detected cancer is approximately 42% in men older than 50 years of age; the frequency of autopsy-detected cancer is similar or higher. In no other malignancy, there is such a vast reservoir of undetected cases that may never be clinically significant or cause death. Prostate cancer incidence is characterized by a very large geographical variability. Asian countries present much lower rates of occurrence of the disease when compared to North and Western European countries, with South American countries displaying an intermediate incidence rate. The incidence of clinical prostate cancer in black men is greater than in any other ethnic group. It is much lower in Asian than the Western population. The incidence of prostate cancer is considerably low in Orientals. Such differences seem to be linked to ethnic characteristics. Because Iranian men are ethnically and racially different from most of Asian countries' men (e.g. Japanese, Chinese, and Arabic men) prevalence of prostate cancer should be different.

Radical cystectomy is the treatment of choice for muscle invasive transitional cell carcinoma (TCC) of the bladder. The most important complications of radical cystectomy is erectile dysfunction or impotence due to the cutting of neurovascular bundle during the excision of prostate. A proposed method for preservation of neurovascular bundle is radical cystectomy with prostatic capsule preservation. During the capsule sparing surgery, a piece of the peripheral tissue of the prostate is preserved with the capsule. Since the involvement of prostatic capsule in TCC is reported to be about 43%, keeping this residue