May 2008

Vitamin B12 deficiency common in primary hypothyroidism

Abdul Jabbar
Aga Khan University

Aasma Yawar
Aga Khan University

Sabiha Waseem
Aga Khan University

Najmul Islam
Aga Khan University

Naeem Ul Haque
Aga Khan University

See next page for additional authors

Follow this and additional works at: http://ecommons.aku.edu/pakistan_fhs_mc_med_diabet_endocrinol_metab

Part of the Endocrine System Commons, Endocrine System Diseases Commons, and the Endocrinology, Diabetes, and Metabolism Commons

Recommended Citation
Available at: http://ecommons.aku.edu/pakistan_fhs_mc_med_diabet_endocrinol_metab/10
Vitamin B_{12} deficiency common in primary hypothyroidism

Abdul Jabbar, Aasma Yawar, Sabeha Wasim, Najmul Islam, Naeem Ul Haque, Ataullah Khan, Jaweed Akhter
Department of Medicine, Aga Khan University, Karachi, Pakistan.

Abstract

Objective: To assess the prevalence and clinical features of B_{12} deficiency in hypothyroid patients and to evaluate clinical response in symptoms to B_{12} replacement therapy.

Methods: One hundred and sixteen hypothyroid patients from our endocrine clinic were evaluated for signs and symptoms of vitamin B_{12} deficiency. Laboratory parameters including Haemoglobin (Hb), MCV, Vitamin B_{12} levels and presence of anti thyroid antibodies were analyzed. Patients with low B_{12} levels were treated with parenteral intramuscular vitamin B_{12} monthly, and monitored for improvement of symptoms.

Results: A total of 116 patients (95 females and 21 males) were evaluated. Forty six (39.6%) hypothyroid patients had low vitamin B_{12} levels. Males and females had the same prevalence of B_{12} deficiency. Generalized weakness, impaired memory, depression, numbness and decreased reflexes were more frequently noted in B_{12} deficient patients, but failed to achieve statistical significance when compared with B_{12} sufficient patients. The mean Hb in B_{12} deficient group was 11.9±1.6 mg/dl and 12.4 ± 1.7 mg/dl in the B_{12} sufficient group, however the mean MCV did not differ in the two groups. Patients with B_{12} deficiency did not have a higher prevalence of anaemia. Thyroid antibodies were checked in half the patients and 67% had positive titers for anti thyroid antibodies. Prevalence of vitamin B_{12} deficiency did not differ in patients with positive antibodies (43.2%) compared to those with negative antibodies (38.9%) (p= 0.759). Twenty four hypothyroid patients with B_{12} deficiency received intramuscular vitamin B_{12} injections monthly and improvement in symptoms was noted in 58.3% of these subjects. Additionally, 21 subjects complained of symptoms consistent with B_{12} deficiency but who had normal range B_{12} levels and were prescribed monthly B_{12} injections and 8 (40%) had good subjective clinical response at 6 months.

Conclusions: There is a high (approx 40%) prevalence of B_{12} deficiency in hypothyroid patients. Traditional symptoms are not a good guide to determining presence of B_{12} deficiency. Screening for vitamin B_{12} levels should be undertaken in all hypothyroid patients, irrespective of their thyroid antibody status. Replacement of B_{12} leads to improvement in symptoms, although a placebo effect cannot be excluded, as a number of patients without B_{12} deficiency also appeared to respond to B_{12} administration (JPMA 58:258;2008).

Introduction

Vitamin B_{12} (cyanocobalamin) deficiency occurs in 3-4% of the general population. The prevalence is reported to be higher (15-25%) among nursing home residents. Pericinous anaemia is present more frequently in subjects with primary autoimmune hypothyroidism with reports of association in up to 12% of hypothyroid patients. Antibodies to gastric parietal cells are seen in 1/3 rd of patients with primary hypothyroidism. Vitamin B_{12} deficiency in hypothyroid patients may also be due to other causes, including inadequate intake or altered intestinal absorption due to sluggish bowel motility, bowel wall oedema and bacterial overgrowth. Non autoimmune causes of B_{12} deficiency in hypothyroid patients have not been evaluated in detail and may vary according to dietary habits in different population groups. Hypothyroid patients often present with symptoms of paraesthesia, numbness, weakness and poor memory, despite being on adequate replacement doses of thyroxine. We noted these symptoms to be common among our hypothyroid patients and hence undertook to evaluate vitamin
B₁₂ levels in patients with primary hypothyroidism.

Patients and Methods

Patients with primary hypothyroidism who attended the endocrine clinic at Aga Khan University Hospital, Karachi, Pakistan from January 2001 - December 2001 were evaluated. Patients, who were vegetarian, had a history of gastric or ileal resection, or pancreatic insufficiency were excluded. Clinical features including weakness, numbness, diarrhoea, abdominal pain, impairment of memory, parasthesias, dysphagia, dizziness and depression were noted. Concomitant illnesses and medications including use of metformin and gastric acid inhibitors were noted. Presence of pallor, inflammation of tongue, impaired vibration or position sense, reflexes and presence of splenomegaly were recorded. Haemoglobin (Hb), mean corpuscular volume (MCV), anti thyroid antibodies, thyroid function tests and vitamin B₁₂ levels were measured. Patients with low B₁₂ levels or who had suggestive symptoms were treated with monthly intramuscular vitamin B₁₂ injections. The patients were followed for 6 months after institution of B₁₂ replacement and self reported change in symptoms was noted.

Haemoglobin was checked by Coulter counter. Vitamin B₁₂ levels were estimated by RIA (radioimmunoassay) on a gamma counter by the diagnostic product cooperation (DPC), the normal range being 200 to 900 pg/ml. Thyroid antibodies were checked by the haemagglutination method by Remel and positive tests were then diluted and results were reported accordingly.

Results were expressed as mean ± standard deviation, median for all continuous variables and number (percentage) for categorical data. Univariate analysis was performed by using the independent sample t-test, Mann Whitney U test, Pearson Chi-square test and Fisher Exact test whenever appropriate. A p value <0.05 was considered statistically significant and was two sided. Statistical interpretation of data was performed using SPSS 10.0

Results

Of the 116 hypothyroid patients evaluated, 95 (81.8%) were females and 21 (18.2%) were males. Patients' ages ranged from 19 to 91 years. The mean age was 44.9 ± 13.7 years (53.6 ± 12.3 for males and 41.9 ± 13.1 years for females). Fifty percent (40.5%) had B₁₂ levels <200 pg/ml (normal 200-900pg/ml). Of these, 31 had B₁₂ levels between 100 and 200 pg/ml and 16 patients had B₁₂ <100pg/ml. No difference in mean age and sex ratios between groups with Vitamin B₁₂ deficiency and those with normal B₁₂ levels were noted (Table 1).

Symptoms of numbness, paraesthesia and dysphagia were seen more commonly in B₁₂ deficient patients compared to B₁₂ sufficient patients. The frequency of the commonly recognized symptoms associated with vitamin B₁₂ deficiency among our hypothyroid patients is noted in Table 2. Two hypothyroid patients with B₁₂ deficiency were noted to have glossitis. Impaired vibration or position sense was not recorded in any of the B₁₂ deficient patients. There were more patients with impaired vibration sense and diminished lower extremity reflexes in the B₁₂ sufficient group. The frequency of abnormal signs is noted in Table 3.

<table>
<thead>
<tr>
<th>No.</th>
<th>B₁₂ >200 pg/ml</th>
<th>B₁₂<200pg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>44.9 ± 14.3 yrs</th>
<th>42.7±12.7 yrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>M 12 (17.4%) M 9 (19.1%)</td>
<td></td>
</tr>
<tr>
<td>F 57 (82.6%) F 38 (80.8%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Total No.</th>
<th>B₁₂<200pg/ml</th>
<th>B₁₂>200pg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness</td>
<td>61/113</td>
<td>26 (42.6%)</td>
<td>35(57.4%)</td>
</tr>
<tr>
<td>Numbness</td>
<td>22/109</td>
<td>12 (54.5%)</td>
<td>10 (45.5%)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>6/113</td>
<td>2 (33.3%)</td>
<td>4 (66.7%)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>21/114</td>
<td>9 (42.9%)</td>
<td>12 (57.1%)</td>
</tr>
<tr>
<td>Impaired memory</td>
<td>11/114</td>
<td>3 (27.3%)</td>
<td>8 (72.7%)</td>
</tr>
<tr>
<td>Fever</td>
<td>8/116</td>
<td>2 (25%)</td>
<td>6 (75%)</td>
</tr>
<tr>
<td>Parasthesias</td>
<td>15/111</td>
<td>9 (60%)</td>
<td>6 (40%)</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>15/114</td>
<td>8 (53.3%)</td>
<td>7 (46.2%)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>26/112</td>
<td>8 (30.8%)</td>
<td>18 (69.2%)</td>
</tr>
<tr>
<td>Depression</td>
<td>22/114</td>
<td>10 (48.5%)</td>
<td>12 (52.5%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign</th>
<th>Number abnormal/ Number tested.</th>
<th>B₁₂<200pg/ml</th>
<th>B₁₂>200pg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pallor</td>
<td>9/102 (8.8%)</td>
<td>5 (55.6%)</td>
<td>4 (44.4%)</td>
</tr>
<tr>
<td>Glossitis</td>
<td>21/166 (1.7%)</td>
<td>2</td>
<td>---</td>
</tr>
<tr>
<td>Impaired vibration</td>
<td>4/57 (7.0%)</td>
<td>---</td>
<td>4</td>
</tr>
<tr>
<td>Impaired position</td>
<td>1/63 (1.5%)</td>
<td>---</td>
<td>1</td>
</tr>
<tr>
<td>Impaired reflexes</td>
<td>23/71 (32.3%)</td>
<td>6 (26.1%)</td>
<td>17 (73.9%)</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>1/116 (0.86%)</td>
<td>---</td>
<td>1</td>
</tr>
</tbody>
</table>

Vol. 58, No. 5, May 2008
were not noted to have an increased prevalence of anaemia than the non deficient group in both sexes. The MCV was checked in 44 patients, 15 who were B12 deficient and 29 were not. The mean MCV in both groups was not different (84.23± 7.25 fL vs 84.97± 7.36 fL). Antimicrosomal and antithyroglobulin antibodies were checked in 55 and 53 patients respectively. Antimicrosomal antibodies were positive in a total of 37/55 (67.2%) patients. Of these 16/37 (43.2%) were B12 deficient and 21/37 (56.7%) were B12 sufficient. Antithyroglobulin antibodies were positive in 32/53 (60.3%) patients 16 each in B12 deficient and sufficient group. They were negative in 21/53 (39.7%) patients. There was no association noted between B12 status and presence of thyroid antibodies.

Associated diseases among the 116 hypothyroid patients included diabetes mellitus (19 patients), hypertension (20 patients), ischaemic heart disease (11 patients) and dyslipidemia (23 patients). Six of the 19 diabetic patients (31.6%) were B12 deficient. Four of these individuals were on metformin which may have contributed to B12 deficiency. Four of 17 patients on proton pump inhibitors or H2 receptor blockers were found to be B12 deficient

Replacement therapy with intramuscular B12 injections was instituted in a total of 45 patients with almost equal number of patients in the B12 deficient (24 patients) and non deficient patients (21 patients) who had symptoms suggestive of B12 deficiency. Improvement in symptoms were documented in a total of 36 patients of which 21 (58.3%) were B12 deficient and 15 (41.7%) were not. Nine patients reported no improvement in symptoms, of which 3/9 (33.3%) were deficient of B12 and 6/9 (66.6%) were not.

Discussion

Vitamin B12, also known as cobalamin, was first isolated in 1948 and soon after found to be effective in treatment of pernicious anaemia. Prevalence of B12 deficiency has been reported up to 15-25% in certain population groups particularly in the elderly.4 We studied prevalence of B12 deficiency in hypothyroid patients and found 47 of 116 (40.5%) patients to have low B12 levels. Prevalence in males (42.9%) and females (40%) was similar.

Hypothyroidism may be associated with pernicious anaemia as part of the autoimmune polyglandular endocrinopathy.5 Vitamin B12 deficiency may occur as a result of autoimmune pernicious anaemia, malabsorption, malnutrition or use of drugs including proton-pump inhibitors, H2 receptor antagonists or metformin.6.7 Metformin can cause malabsorption secondary to its effect on ileal mucosa or membrane receptors.8.9 Proton Pump Inhibitors and H2 receptor antagonists cause gastric hypochlorhydria and malabsorption of vitamin B12. Untreated helicobacter pylori infection is occasionally associated with B12 deficiency.10-12 In our study we found no association between use of drugs and B12 deficiency, although the numbers may not have been large enough to demonstrate this association. Intrinsic factor and gastric parietal cell antibody assays were not available locally at the time of the study, hence while we demonstrated frequent occurrence of B12 deficiency in hypothyroid patients, it was not possible to determine the underlying etiology of this association.

Clinical signs of vitamin B12 deficiency may take long to manifest and often affected patients are asymptomatic for several years. Occasionally, haematological or neuropsychiatric manifestations may present as early markers of deficiency but many non specific complaints are attributed to aging. The neuropsychiatric features include fatigue, weakness, loss of memory, dementia, and depression.4 Hypothyroid and B12 deficient patients often have common symptoms of weakness, lethargy, memory impairment, numbness and tingling. We noticed that several patients, despite being on adequate thyroxine replacement, had persistence of symptoms and subsequently were found to be B12 deficient. In this study, we noted that the complaint of fatigue was common in both patients with normal and low B12 levels. Complaints of memory impairment and frequency of depression also did not differ. Differences in frequencies of numbness and paraesthesia did not reach statistical significance between B12 sufficient and deficient groups. Anaemia with or without macrocytosis, tend to occur later in B12 deficiency, and may be absent in B12 deficiency.13.14 There was a significant improvement reported in symptoms within 3-6 months of initiating B12 treatment in hypothyroid individuals with low B12 levels. We also noted a high reported level of improvement in similar symptoms in those who were not B12 deficient. Hence, a placebo effect may affect the initial reporting of symptoms and a placebo controlled study will be required to determine this.

Metabolism of homocystine and methyl-melonyl acid (MMA) involves cobalamin, thus both MMA and homocystine levels increases in vitamin B12 deficiency.4,15,16 Elevated homocysteine levels have been associated with development of atherosclerosis.17,18 When homocysteine levels are elevated other causes including coexisting folic acid deficiency, renal impairment and inadequate thyroid replacement need to be evaluated. We did not study homocysteine levels in our hypothyroid patients, but this is an area of increasing interest currently. Studies have shown a relationship between hypothyroidism and hyperhomocysteinemia16,19-21, which improves with treatment to euthyroid status.

Our study showed vitamin B12 deficiency to be common
in this population of hypothyroid patients. Screening for B₁₂ deficiency should be undertaken early in the diagnosis of hypothyroidism and periodically thereafter. Patients should be followed and evaluated for suggestive symptoms. Surrogate markers including anaemia and macrocytosis cannot be relied upon to select out likely B₁₂ deficient individuals. There is improvement in symptoms after initiating B₁₂ treatment in these patients although a placebo effect may exist and larger studies need to be undertaken to evaluate this further. Initiation of early therapy will prevent the long term sequela of vitamin B₁₂ deficiency.

References
5. Snow CF. Laboratory diagnosis of vitamin B12 deficiency. Arch Inter Medicine1999; 159;1289-98.

Original Article

Pituitary Height on Magnetic Resonance Imaging Observation of Age and Sex Related Changes
Muhammad Faisal Ikram1, Zafar Sajjad2, Ishrat Shokh3, Amir Omair4
Department of Anatomy1,3, Department of Community Health Sciences4, Ziauddin University, Karachi, Department of Radiology2, Aga Khan University Hospital, Karachi.

Abstract

Objective: To establish measurements of selected pituitary parameters in cases with normal pituitary gland in ≤ 30 year old selected samples from Karachi.

Methods: A total of 220 subjects of ≤ 30 years of age with normal pituitary morphology were evaluated by using T2 weighted Magnetic Resonance (MR) Imaging. Pituitary height (PH) and shape of the superior surface of the gland was observed on midsaggital sections. Data was stratified into six groups on the basis of age and sex to observe the differences.

Results: After the second month of life, the pituitary height increased gradually to achieve its peak in the second decade of life in the females (6.3 ± 1.4 mm, n = 43) and the third decade of life in the males (5.9 ± 1 mm, n = 41). PH decreased gradually there after. Significant difference was observed in PH in different age groups in both genders. Gland was significantly higher in females than males in the second decade. Higher frequencies of convex superior surface followed the same pattern.

Conclusion: This study provided the reference values for the Pituitary height and the shape of the superior surface of the pituitary gland, which may contribute to establish credible reference values (JPMA 58:261;2008).